Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Asymptotic Cyclic Cohomology - Michael Puschnigg

Asymptotic Cyclic Cohomology

Buch | Softcover
XXIV, 244 Seiten
1996 | 1996
Springer Berlin (Verlag)
978-3-540-61986-4 (ISBN)
CHF 67,30 inkl. MwSt
The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.

The asymptotic homotopy category.- Algebraic de Rham complexes.- Cyclic cohomology.- Homotopy properties of X-complexes.- The analytic X-complex.- The asymptotic X-complex.- Asymptotic cyclic cohomology of dense subalgebras.- Products.- Exact sequences.- KK-theory and asymptotic cohomology.- Examples.

Erscheint lt. Verlag 16.12.1996
Reihe/Serie Lecture Notes in Mathematics
Zusatzinfo XXIV, 244 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 345 g
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte cohomology • Cohomology group • Cohomology theory • de Rham cohomology • Homologische Algebra • Homology • Homotopy • Index Theory • Kohomologie • K-Theorie • K-theory • noncomutative geometry
ISBN-10 3-540-61986-0 / 3540619860
ISBN-13 978-3-540-61986-4 / 9783540619864
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich