Asymptotic Cyclic Cohomology
Seiten
1996
|
1996
Springer Berlin (Verlag)
978-3-540-61986-4 (ISBN)
Springer Berlin (Verlag)
978-3-540-61986-4 (ISBN)
The aim of cyclic cohomology theories is the approximation of K-theory by cohomology theories defined by natural chain complexes. The basic example is the approximation of topological K-theory by de Rham cohomology via the classical Chern character. A cyclic cohomology theory for operator algebras is developed in the book, based on Connes' work on noncommutative geometry. Asymptotic cyclic cohomology faithfully reflects the basic properties and features of operator K-theory. It thus becomes a natural target for a Chern character. The central result of the book is a general Grothendieck-Riemann-Roch theorem in noncommutative geometry with values in asymptotic cyclic homology. Besides this, the book contains numerous examples and calculations of asymptotic cyclic cohomology groups.
The asymptotic homotopy category.- Algebraic de Rham complexes.- Cyclic cohomology.- Homotopy properties of X-complexes.- The analytic X-complex.- The asymptotic X-complex.- Asymptotic cyclic cohomology of dense subalgebras.- Products.- Exact sequences.- KK-theory and asymptotic cohomology.- Examples.
Erscheint lt. Verlag | 16.12.1996 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XXIV, 244 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 345 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | cohomology • Cohomology group • Cohomology theory • de Rham cohomology • Homologische Algebra • Homology • Homotopy • Index Theory • Kohomologie • K-Theorie • K-theory • noncomutative geometry |
ISBN-10 | 3-540-61986-0 / 3540619860 |
ISBN-13 | 978-3-540-61986-4 / 9783540619864 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich