Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data-driven Generation of Policies - Austin Parker, Gerardo I. Simari, Amy Sliva, V.S. Subrahmanian

Data-driven Generation of Policies

Buch | Softcover
50 Seiten
2014
Springer-Verlag New York Inc.
978-1-4939-0273-6 (ISBN)
CHF 74,85 inkl. MwSt
This Springer Brief presents a basic algorithm that provides a correct solution to finding an optimal state change attempt, as well as an enhanced algorithm that is built on top of the well-known trie data structure. It explores correctness and algorithmic complexity results for both algorithms and experiments comparing their performance on both real-world and synthetic data. Topics addressed include optimal state change attempts, state change effectiveness, different kind of effect estimators, planning under uncertainty and experimental evaluation. These topics will help researchers analyze tabular data, even if the data contains states (of the world) and events (taken by an agent) whose effects are not well understood. Event DBs are omnipresent in the social sciences and may include diverse scenarios from political events and the state of a country to education-related actions and their effects on a school system. With a wide range of applications in computer science and the social sciences, the information in this Springer Brief is valuable for professionals and researchers dealing with tabular data, artificial intelligence and data mining. The applications are also useful for advanced-level students of computer science.

Introduction and Related Work.- Optimal State Change Attempts.- Different Kinds of Effect Estimators.- A Comparison with Planning under Uncertainty.- Experimental Evaluation.- Conclusions.

Reihe/Serie SpringerBriefs in Computer Science
Zusatzinfo 15 Illustrations, black and white; X, 50 p. 15 illus.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-4939-0273-3 / 1493902733
ISBN-13 978-1-4939-0273-6 / 9781493902736
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85