Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Sets and groups - J. A. Green

Sets and groups

A First Course in Algebra

(Autor)

Buch | Softcover
269 Seiten
2012 | Softcover reprint of the original 1st ed. 1988
Springer (Verlag)
978-94-011-6097-1 (ISBN)
CHF 119,75 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken

1 Sets.- 1.1 Sets.- 1.2 Subsets.- 1.3 Intersection.- 1.4 Union.- 1.5 The algebra of sets.- 1.6 Difference and complement.- 1.7 Pairs. Product of sets.- 1.8 Sets of sets.- Exercises.- 2 Equivalence relations.- 2.1 Relations on a set.- 2.2 Equivalence relations.- 2.3 Partitions.- 2.4 Equivalence classes.- 2.5 Congruence of integers.- 2.6 Algebra of congruences.- Exercises.- 3 Maps.- 3.1 Maps.- 3.2 Equality of maps.- 3.3 Injective, surjective, bijective maps. Inverse maps..- 3.4 Product of maps.- 3.5 Identity maps.- 3.6 Products of bijective maps.- 3.7 Permutations.- 3.8 Similar sets.- Exercises.- 4 Groups.- 4.1 Binary operations on a set.- 4.2 Commutative and associative operations.- 4.3 Units and zeros.- 4.4 Gruppoids, semigroups and groups.- 4.5 Examples of groups.- 4.6 Elementary theorems on groups.- Exercises.- 5 Subgroups.- 5.1 Subsets closed to an operation.- 5.2 Subgroups.- 5.3 Subgroup generated by a subset.- 5.4 Cyclic groups.- 5.5 Groups acting on sets.- 5.6 Stabilizers.- Exercises.- 6 Cosets.- 6.1 The quotient sets of a subgroup.- 6.2 Maps of quotient sets.- 6.3 Index. Transversals.- 6.4 Lagrange's theorem.- 6.5 Orbits and stabilizers.- 6.6 Conjugacy classes. Centre of a group.- 6.7 Normal subgroups.- 6.8 Quotient groups.- Exercises.- 7 Homomorphisms.- 7.1 Homomorphisms.- 7.2 Some lemmas on homomorphisms.- 7.3 Isomorphism.- 7.4 Kernel and image.- 7.5 Lattice diagrams.- 7.6 Homomorphisms and subgroups.- 7.7 The second isomorphism theorem.- 7.8 Direct products and direct sums of groups.- Exercises.- 8 Rings and fields.- 8.1 Definition of a ring. Examples.- 8.2 Elementary theorems of rings. Subrings.- 8.3 Integral domains.- 8.4 Fields. Division rings.- 8.5 Polynomials.- 8.6 Homomorphisms. Isomorphism of rings.- 8.7 Ideals.- 8.8 Quotient rings.- 8.9 The Homomorphism Theorem for rings.- 8.10 Principal ideals in a commutative ring.- 8.11 The Division Theorem for polynomials.- 8.12 Polynomials over a field.- 8.13 Divisibility in Z and in F[X].- 8.14 Euclid's algorithm.- Exercises.- 9 Vector spaces and matrices.- 9.1 Vector spaces over a field.- 9.2 Examples of vector spaces.- 9.3 Two geometric interpretations of vectors.- 9.4 Subspaces.- 9.5 Linear combinations. Spanning sets.- 9.6 Linear dependence. Basis of a vector space.- 9.7 The Basis Theorem. Dimension.- 9.8 Linear maps. Isomorphism of vector spaces.- 9.9 Matrices.- 9.10 Laws of matrix algebra. The ring Mn(F).- 9.11 Row space of a matrix. Echelon matrices.- 9.12 Systems of linear equations.- 9.13 Matrices and linear maps.- 9.14 Invertible matrices. The group GLn(F).- Exercises.- Tables.- List of notations.- Answers to exercises.

Reihe/Serie Library of Mathematics
Zusatzinfo biography
Verlagsort Dordrecht
Sprache englisch
Maße 127 x 203 mm
Gewicht 299 g
Einbandart Paperback
Themenwelt Schulbuch / Wörterbuch
Mathematik / Informatik Mathematik Logik / Mengenlehre
Naturwissenschaften
ISBN-10 94-011-6097-X / 940116097X
ISBN-13 978-94-011-6097-1 / 9789401160971
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
how simple questions lead us to mathematics’ deepest truths

von Eugenia Cheng

Buch | Softcover (2024)
Profile Books Ltd (Verlag)
CHF 19,15