Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Gromov’s Compactness Theorem for Pseudo-holomorphic Curves - Christoph Hummel

Gromov’s Compactness Theorem for Pseudo-holomorphic Curves

Buch | Softcover
VIII, 135 Seiten
2012 | 1. Softcover reprint of the original 1st ed. 1997
Springer Basel (Verlag)
978-3-0348-9842-3 (ISBN)
CHF 74,85 inkl. MwSt

Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces.

I Preliminaries.- 1. Riemannian manifolds.- 2. Almost complex and symplectic manifolds.- 3. J-holomorphic maps.- 4. Riemann surfaces and hyperbolic geometry.- 5. Annuli.- II Estimates for area and first derivatives.- 1. Gromov's Schwarz- and monotonicity lemma.- 2. Area of J-holomorphic maps.- 3. Isoperimetric inequalities for J-holomorphic maps.- 4. Proof of the Gromov-Schwarz lemma.- III Higher order derivatives.- 1. 1-jets of J-holomorphic maps.- 2. Removal of singularities.- 3. Converging sequences of J-holomorphic maps.- 4. Variable almost complex structures.- IV Hyperbolic surfaces.- 1. Hexagons.- 2. Building hyperbolic surfaces from pairs of pants.- 3. Pairs of pants decomposition.- 4. Thick-thin decomposition.- 5. Compactness properties of hyperbolic structures.- V The compactness theorem.- 1. Cusp curves.- 2. Proof of the compactness theorem.- 3. Bubbles.- VI The squeezing theorem.- 1. Discussion of the statement.- 2. Proof modulo existence result for pseudo-holomorphic curves.- 3. The analytical setup: A rough outline.- 4. The required existence result.- Appendix A The classical isoperimetric inequality.- References on pseudo-holomorphic curves.

 
  "...the book provides a self-contained and for the most part excellent elaboration of Gromov's proof of the compactness theorem."   
  -- Mathematical Reviews 

Erscheint lt. Verlag 15.10.2012
Reihe/Serie Progress in Mathematics
Zusatzinfo VIII, 135 p.
Verlagsort Basel
Sprache englisch
Maße 155 x 235 mm
Gewicht 237 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Geometry • manifold • Proof • Symplectic Geometry • Theorem
ISBN-10 3-0348-9842-8 / 3034898428
ISBN-13 978-3-0348-9842-3 / 9783034898423
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90