Nonlinear Computational Structural Mechanics
Springer-Verlag New York Inc.
978-1-4612-7141-3 (ISBN)
1 The Reference Problem for Small Disturbances.- 1.1. Notation.- 1.2. The reference problem.- 1.3. Sufficient conditions assuring uniqueness.- 1.4. Analogy with the basic problem of fluid mechanics.- 2 Material Models.- 2.1. Formulation with internal variables.- 2.2. Examples of material models.- 2.3. Formulation of the constitutive relation.- 2.4. Normal formulation of a constitutive model.- 2.5. Error as measured by the constitutive relation (error in CR).- 3 Solution Methods for Nonlinear Evolution Problems.- 3.1. The principle of incremental methods.- 3.2. Differential equation formulation of the reference problem.- 3.3. A general presentation of some classical methods for solving nonlinear problems.- 3.4. Other approaches to nonlinear evolution problems.- 4 Principles of the Method of Large Time Increments.- 4.1. Mechanics framework for the method of large time increments.- 4.2. Algorithms for two search directions.- 4.3. The local step.- 4.4. The global linear step.- 4.5. Convergence.- 4.6. A posteriori error estimates.- 4.7. Remarks.- 5 A Preliminary Example: A Beam in Traction.- 5.1. Quasi-static analysis for a viscoplastic material.- 5.2. Static analysis for a hyperelastic material.- 6 A “Mechanics Approximation” and Numerical Implementation.- 6.1. Discretization in time and space.- 6.2. Numerical treatment of the local step.- 6.3. Treatment of the linear global step in statics.- 6.4. Decomposition and approximation of the “radial loading” type for a function defined on ? × [0T].- 6.5. Applications and analysis of performance.- 7 Modeling and Calculation for Structures under Cyclic Loads.- 7.3. Treatment of the linear global step.- 7.4. A one-dimensional example.- 7.5. Example: viscoplastic disk with a loading of 1,000 cycles.- 8 Formulation and“Parallel” Strategies in Mechanics.- 8.1. Remarks on the degree of parallelism in the equations of reference.- 8.2. Partioning of the body into sub-structures and interfaces.- 8.3. Treatment of a static assemblage of elastic structures.- 8.4. Convergence for a static assemblage of elastic structures.- 8.5. Dynamic and static treatment of an assemblage of structures with nonlinear behavior.- 9 Modeling and Computation for Large Deformations.- 9.1. Material quantities and modeling of their behavior.- 9.2. Pure material formulation of large deformations—bases.- 9.3. Kinematic and other properties.- 9.4. Purely material formulation of the equilibrium of the body—properties and approximations.- 9.5. Two different representations of the modeling and computation of large deformations.- 9.6. Approaches to large time increments.- 9.7. Remarks and an example.
Erscheint lt. Verlag | 23.10.2012 |
---|---|
Reihe/Serie | Mechanical Engineering Series |
Übersetzer | J.G. Simmonds |
Zusatzinfo | XII, 222 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Technik ► Maschinenbau | |
ISBN-10 | 1-4612-7141-X / 146127141X |
ISBN-13 | 978-1-4612-7141-3 / 9781461271413 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich