Nicht aus der Schweiz? Besuchen Sie lehmanns.de

New Frontiers in Mining Complex Patterns

First International Workshop, NFMCP 2012, Held in Conjunction with ECML/PKDD 2012, Bristol, UK, September 24, 2012, Revised Selected Papers
Buch | Softcover
X, 231 Seiten
2013 | 2013
Springer Berlin (Verlag)
978-3-642-37381-7 (ISBN)

Lese- und Medienproben

New Frontiers in Mining Complex Patterns -
CHF 68,90 inkl. MwSt
This book constitutes the thoroughly refereed conference proceedings of the First International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2012, held in conjunction with ECML/PKDD 2012, in Bristol, UK, in September 2012.
The 15 revised full papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on mining rich (relational) datasets, mining complex patterns from miscellaneous data, mining complex patterns from trajectory and sequence data, and mining complex patterns from graphs and networks.

Learning with Configurable Operators and RL-Based Heuristics.- Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-Constrained Patterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.

Reducing Examples in Relational Learning with Bounded-Treewidth Hypotheses.- Mining Complex Event Patterns in Computer Networks.- Learning in the Presence of Large Fluctuations: A Study of Aggregation and Correlation.- Machine Learning as an Objective Approach to Understanding Music.- Pair-Based Object-Driven Action Rules.- Effectively Grouping Trajectory Streams.- Healthcare Trajectory Mining by Combining Multidimensional Component and Itemsets.- Graph-Based Approaches to Clustering Network-Constrained Trajectory Data.- Finding the Most Descriptive Substructures in Graphs with Discrete and Numeric Labels.- Learning in Probabilistic Graphs Exploiting Language-ConstrainedPatterns.- Improving Robustness and Flexibility of Concept Taxonomy Learning from Text.- Discovering Evolution Chains in Dynamic Networks.- Supporting Information Spread in a Social Internetworking Scenario.- Context-Aware Predictions on Business Processes: An Ensemble-Based Solution.

Erscheint lt. Verlag 9.4.2013
Reihe/Serie Lecture Notes in Artificial Intelligence
Lecture Notes in Computer Science
Zusatzinfo X, 231 p. 57 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 375 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Schlagworte Data Mining • Feature Selection • log mining • probabilistic graphs • Social Web
ISBN-10 3-642-37381-X / 364237381X
ISBN-13 978-3-642-37381-7 / 9783642373817
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85