Grundzüge der Mehrdimensionalen Differentialgeometrie
Springer Berlin (Verlag)
978-3-642-50371-9 (ISBN)
I. Die Affinoralgebra der n-dimensionalen Differentialgeometrie.- 1. Die Gruppen und deren Größen.- 2. Die n-dimensionale Mannigfaltigkeit.- 3. Skalare, ko- und kontravariante Vektoren.- 4. Kontra- und kovariante Affinoren.- 5. Symmetrische und alternierende Affinoren.- 6. Die TYberschiebungen.- 7. Der Fundamentaltensor.- 8. Identifizierung von kontra- und kovarianten Größen.- 9. Die idealen Faktoren des Fundamentaltensors. Gleichberechtigte ideale Faktoren.- 10. Lineare Transformationen.- 11. Die Winkel einer Vp und einer Vq in P.- II. Die Affinoranalysis der n-dimensionalen Differentialgeometrie.- 1. Ortsfunktionen.- 2. Die allgemeine lineare Übertragung.- 3. Die geodätische Übertragung.- 4. Die geodätische Linie und das geodätisch mitbewegte Koordinatensystem.- 5. Einige wichtige Differentiationsregeln.- 6. Parallele Vn? 1 1.- 7. Vq-normale und Vq-bildende Felder.- 8. Kongruenzen. Orthogonalnetze.- 9. Mehrfache Differentiation.- 10. Die geometrische Bedeutung von$$ mathop Klimits^4 $$.- 11. Die Riemannsche Krümmung.- 12. Die Tensoren 2K und 2G.- 13. Die Integrabilitätsbedingungen einer Affinordifferentialgleichung erster Ordnung.- III. Krümmungseigensehaften der Vm in Vn, die sich ohne Verwendung des Riemann-Christoffelsehen Affinors formulieren lassen.- 1.V1 in Vn.- 2. V1 in Vn? 1 in Vn.- 3. Der zweite Fundamentaltensor einer Vn? 1 in Vn.- 4. Hauptkrümmungs- und konjugierte Richtungen einer Vn? 1 in Vn.- 5. Geodätische Linien in Vn? 1 in Vn.- 6. Vm in Vn absolute, relative und erzwungene Krümmung einer Kongruenz.- 7. Die Hauptrichtungen einer Vm in Vn.- 8. Der Hauptsatz des Krümmungsaffinors (Bedingung für eine geodätische Mannigfaltigkeit).- 9. Der Hauptsatz des mittleren Krümmungsvektors. (Bedingung für eine malmannigfaltigkeit).-10. Die Beziehungen zwischen der Klasse einer Vn und dem Freiheitsgrad des mitbewegten Bezugssystems.- 11. Das Krümmungsgebiet und das Krümmungsgebilde einer Vm in Vn.- 12. Der Umbilikalvektor. Besondere Punkte und Richtungen.- 13. Die höheren Krümmungen einer V1 in Vm in Vn.- 14. DieKriimmungsgebiete undHaupttangentenkurven höhererOrdnung einerVm in Vn.- 15. Vm in Vn in Vm in Vn.- 16. Vm in Vn mit lauter axialen Punkten. Übertragung der Eigenschaften der V n? 1 auf Vm.- 17. Erweiterung des Meusnierschen Satzes für Vp? 1 in Vn? 1 in Vn.- 18. V2 in Vn.- 19. V3 in Vn.- IV. Krümmungseigensehaften der Vm in Vn die sieh auf Christoffelsehe Affinoren beziehen.- 1. Vm in Vn Beziehungen der Riemann-Christoffelschen Affinoren.- 2. Absolute, relative und erzwungene Krümmung einer Vm in Vn.- 3. Die Beziehungen der relativen Krümmung zu den Hauptkrümmungsradien und die einfachsten Biegungsinvarianten.- 4. Andere Biegungsinvarianten einer Vm in Vn.- 5. Bedingungen für eine Vm in Vn.- 6. Die Gleichung ?$$ {i_n} = mathop plimits^2 $$.- 7. Vn in Vn+ 1 mit einem zweiten Fundamentaltensor m- ten Ranges, m?n.- 8. Die Vn in Vn+ 1 mit lauter Nabelpunkten.- 9. Die developpablen Vn in Sn+ 1 und die Vn in Sn+ 1 die Biegung zulassen.- 10. n-fache Orthogonalsysteme.- 11. Bedingungen für ein Vm-Element zweiter Ordnung in einer Rn.- 12. Die Identität von Bianchi.- 13. Die konformeuklidischen Mannigfaltigkeiten.- 14. Einige Sätze über Hauptkongruenzen einer Vn.- 15. Die Killingsche Gleichung.- 16. Integration der Killingschen Gleichung.- 17. Allgemeine Folgerungen aus den Integrabilitätsbedingungen.- 18. Der Fall der V2.- 19. Der Fall der V3.- 20. Die Mannigfaltigkeiten mit unbestimmten Hauptrichtungen.- 21. Weitere Untersuchungen über spezielle Vn.- VergleichendesVerzeichnis der von einigen Autoren verwendetenSymbolik.- Vergleichendes Namensverzeichnis.- Übersicht der verschiedenen Indizes.- Sonstige Bemerkungen.- Namen- und Sachverzeichnis.
Erscheint lt. Verlag | 1.1.1922 |
---|---|
Zusatzinfo | VIII, 200 S. 2 Abb. |
Verlagsort | Berlin |
Sprache | deutsch |
Maße | 152 x 229 mm |
Gewicht | 314 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Differentialgeometrie • Hauptkrümmung • Krümmung • Mannigfaltigkeit • Tangente • Tensor |
ISBN-10 | 3-642-50371-3 / 3642503713 |
ISBN-13 | 978-3-642-50371-9 / 9783642503719 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich