Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mining of Data with Complex Structures - Fedja Hadzic, Henry Tan, Tharam S. Dillon

Mining of Data with Complex Structures

Buch | Softcover
XX, 328 Seiten
2013 | 2010
Springer Berlin (Verlag)
978-3-642-26703-1 (ISBN)
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Mining of Data with Complex Structures explores nature of data with complex structure including sequences, trees and graphs. Readers will find a detailed description of the state-of-the-art of sequence mining, tree mining and graph mining, and more.

Mining of Data with Complex Structures:

- Clarifies the type and nature of data with complex structure including sequences, trees and graphs

- Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining.

- Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints.

- Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.)

- Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees.

- Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees.

- Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach.

- Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies.

- Details the extension of the TMG framework for sequence mining

- Provides an overview of the future research direction with respect to technical extensions and application areas

The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry.In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains.

Introduction.- Tree Mining Problem.- Algorithm Development Issues.- Tree Model Guided Framework.- TMG Framework for Mining Ordered Subtrees.- TMG Framework for Mining Unordered Subtrees.- Mining Distance-Constrained Embedded Subtrees.- Mining Maximal And Closed Frequent Subtrees.- Tree Mining Applications.- Extension of TMG Framework for Mining Frequent Subsequences.- Graph Mining.- New Research Directions.

Erscheint lt. Verlag 25.2.2013
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XX, 328 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 534 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Bioinformatics • Complex Structures • Computational Intelligence • Data Mining • extension • Knowledge • Racter
ISBN-10 3-642-26703-3 / 3642267033
ISBN-13 978-3-642-26703-1 / 9783642267031
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85