Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Statistics Handbook with MATLAB - Wendy L. Martinez, Angel R. Martinez

Computational Statistics Handbook with MATLAB

Buch | Hardcover
731 Seiten
2015 | 3rd edition
Crc Press Inc (Verlag)
978-1-4665-9273-5 (ISBN)
CHF 169,30 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods.

New to the Third EditionThis third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines.

Web ResourceThe authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.

Wendy L. Martinez is a mathematical statistician with the U.S. Bureau of Labor Statistics. She is a fellow of the American Statistical Association, a co-author of several popular Chapman & Hall/CRC books, and a MATLAB® user for more than 20 years. Her research interests include text data mining, probability density estimation, signal processing, scientific visualization, and statistical pattern recognition. She earned an M.S. in aerospace engineering from George Washington University and a Ph.D. in computational sciences and informatics from George Mason University. Angel R. Martinez is fully retired after a long career with the U.S. federal government and as an adjunct professor at Strayer University, where he taught undergraduate and graduate courses in statistics and mathematics. Before retiring from government service, he worked for the U.S. Navy as an operations research analyst and a computer scientist. He earned an M.S. in systems engineering from the Virginia Polytechnic Institute and State University and a Ph.D. in computational sciences and informatics from George Mason University.

Introduction. Probability Concepts. Sampling Concepts. Generating Random Variables. Exploratory Data Analysis. Finding Structure. Monte Carlo Methods for Inferential Statistics. Data Partitioning. Probability Density Estimation. Supervised Learning. Unsupervised Learning. Parametric Models. Nonparametric Models. Markov Chain Monte Carlo Methods. Appendices. References. Index.

Reihe/Serie Chapman & Hall/CRC Computer Science & Data Analysis
Zusatzinfo 35 Tables, black and white; 205 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 1202 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-4665-9273-7 / 1466592737
ISBN-13 978-1-4665-9273-5 / 9781466592735
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90