Geometry: Plane and Fancy
Springer-Verlag New York Inc.
978-1-4612-6837-6 (ISBN)
1 Euclid and Non-Euclid.- 1.1 The Postulates: What They Are and Why.- 1.2 The Parallel Postulate and Its Descendants.- 1.3 Proving the Parallel Postulate.- 2 Tiling the Plane with Regular Polygons.- 2.1 Isometries and Transformation Groups.- 2.2 Regular and Semiregular Tessellations.- 2.3 Tessellations That Aren’t, and Some Fractals.- 2.4 Complex Numbers and the Euclidean Plane.- 3 Geometry of the Hyperbolic Plane.- 3.1 The Poincaré disc and Isometries of the Hyperbolic Plane.- 3.2 Tessellations of the Hyperbolic Plane.- 3.3 Complex numbers, Möbius Transformations, and Geometry.- 4 Geometry of the Sphere.- 4.1 Spherical Geometry as Non-Euclidean Geometry.- 4.2 Graphs and Euler’s Theorem.- 4.3 Tiling the Sphere: Regular and Semiregular Polyhedra.- 4.4 Lines and Points: The Projective Plane and Its Cousin.- 5 More Geometry of the Sphere.- 5.1 Convex Polyhedra are Rigid: Cauchy’s Theorem.- 5.2 Hamilton, Quaternions, and Rotating the Sphere.- 5.3 Curvature of Polyhedra and the Gauss-Bonnet Theorem.- 6 Geometry of Space.- 6.1 A Hint of Riemannian Geometry.- 6.2 What Is Curvature?.- 6.3 From Euclid to Einstein.- References.
Reihe/Serie | Undergraduate Texts in Mathematics |
---|---|
Zusatzinfo | X, 162 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 1-4612-6837-0 / 1461268370 |
ISBN-13 | 978-1-4612-6837-6 / 9781461268376 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich