Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Guide to OCR for Arabic Scripts (eBook)

eBook Download: PDF
2012 | 2012
XX, 592 Seiten
Springer London (Verlag)
978-1-4471-4072-6 (ISBN)

Lese- und Medienproben

Guide to OCR for Arabic Scripts -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This Guide to OCR for Arabic Scripts is the first book of its kind, specifically devoted to this emerging field. Topics and features: contains contributions from the leading researchers in the field; with a Foreword by Professor Bente Maegaard of the University of Copenhagen; presents a detailed overview of Arabic character recognition technology, covering a range of different aspects of pre-processing and feature extraction; reviews a broad selection of varying approaches, including HMM-based methods and a recognition system based on multidimensional recurrent neural networks; examines the evaluation of Arabic script recognition systems, discussing data collection and annotation, benchmarking strategies, and handwriting recognition competitions; describes numerous applications of Arabic script recognition technology, from historical Arabic manuscripts to online Arabic recognition.

Volker Märgner is Academic Director of the Institute for Communications Technology (IfN) at Technische Universität Braunschweig, Germany. He has over 30 years research experience in image processing, pattern recognition, and handwriting recognition. He developed the IfN/ENIT-database of Arabic handwritten names which is the reference for Arabic handwritten word recognition systems and organized competitions both together with Haikal El Abed.

Haikal El Abed is a Senior Research Engineer at the Institute for Communications Technology (IfN) at Technische Universität Braunschweig, Germany. He has more than 10 years research experience in pattern recognition and Arabic text recognition, on-line and off-line. He organizes competitions and works on the collection of databases.


Optical Character Recognition (OCR) is a key technology enabling access to digital text data. This technique is especially valuable for Arabic scripts, for which there has been very little digital access.Arabic script is widely used today. It is estimated that approximately 200 million people use Arabic as a first language, and the Arabic script is shared by an additional 13 languages, making it the second most widespread script in the world. However, Arabic scripts pose unique challenges for OCR systems that cannot be simply adapted from existing Latin character-based processing techniques.This comprehensive Guide to OCR for Arabic Scripts is the first book of its kind, specifically devoted to this emerging field. Presenting state-of-the-art research from an international selection of pre-eminent authorities, the book reviews techniques and algorithms for the recognition of both handwritten and printed Arabic scripts. Many of these techniques can also be applied to other scripts, serving as an inspiration to all groups working in the area of OCR.Topics and features: contains contributions from the leading researchers in the field; with a Foreword by Professor Bente Maegaard of the University of Copenhagen; presents a detailed overview of Arabic character recognition technology, covering a range of different aspects of pre-processing and feature extraction; reviews a broad selection of varying approaches, including HMM-based methods and a recognition system based on multidimensional recurrent neural networks; examines the evaluation of Arabic script recognition systems, discussing data collection and annotation, benchmarking strategies, and handwriting recognition competitions; describes numerous applications of Arabic script recognition technology, from historical Arabic manuscripts to online Arabic recognition.This authoritative work is an essential reference for all researchers and graduate students interested in OCR technology and methodology in general, and in Arabic scripts in particular.

Volker Märgner is Academic Director of the Institute for Communications Technology (IfN) at Technische Universität Braunschweig, Germany. He has over 30 years research experience in image processing, pattern recognition, and handwriting recognition. He developed the IfN/ENIT-database of Arabic handwritten names which is the reference for Arabic handwritten word recognition systems and organized competitions both together with Haikal El Abed.Haikal El Abed is a Senior Research Engineer at the Institute for Communications Technology (IfN) at Technische Universität Braunschweig, Germany. He has more than 10 years research experience in pattern recognition and Arabic text recognition, on-line and off-line. He organizes competitions and works on the collection of databases.

Part I: Pre-ProcessingAn Assessment of Arabic Handwriting Recognition TechnologySargur N. Srihari and Gregory BallLayout Analysis of Arabic Script DocumentsSyed Saqib Bukhari, Faisal Shafait and Thomas M. BreuelA Multi-Stage Approach to Arabic Document AnalysisEugene Borovikov and Ilya ZavorinPre-Processing Issues in Arabic OCRZhixin Shi, Srirangaraj Setlur and Venu GovindarajuSegmentation of Ancient Arabic DocumentsAbdel Belaïd and Nazih OuwayedFeatures for HMM-Based Arabic Handwritten Word Recognition SystemsLaurence Likforman-Sulem, Ramy Al Hajj Mohammad, Chafic Mokbel, Fares Menasri, Anne-Laure Bianne-Bernard and Christopher KermorvantPart II: RecognitionPrinted Arabic Text RecognitionIrfan Ahmed, Sabri A. Mahmoud and Mohammed Tanvir ParvezHandwritten Arabic Word Recognition Using the IFN/ENIT-DatabaseMario Pechwitz, Haikal El Abed and Volker MärgnerRWTH OCR: A Large Vocabulary Optical Character Recognition System for Arabic ScriptsPhilippe Dreuw, David Rybach, Georg Heigold and Hermann NeyArabic Handwriting Recognition using Bernoulli HMMsIhab Alkhoury, Adrià Giménez and Alfons JuanHandwritten Farsi Words Recognition Using Hidden Markov ModelsPuntis Jifroodian and Ching Y. SuenOffline Arabic Handwriting Recognition with Multidimensional Recurrent Neural NetworksAlex GravesApplication of Fractal Theory in Farsi/Arabic Document AnalysisSaeed MozaffariMulti-Stream Markov Models for Arabic Handwriting RecognitionYousri Kessentini, Thierry Paquet and AbdelMajid Ben HamadouTowards Distributed Cursive Writing OCR Systems based on the Combination of Complementary ApproachesMaher Khemakhem and Abdelfettah BelghithPart III: EvaluationData Collection and Annotation for Arabic Document AnalysisIlya Zavorin and Eugene BorovikovArabic Handwriting Recognition CompetitionsVolker Märgner and Haikal El AbedBenchmarking Strategy for Arabic Screen Rendered Word RecognitionFouad Slimane, Slim Kanoun, Jean Hennebert, Rolf Ingold, Adel M. Alimi and Jean HennebertPart IV: ApplicationsA Robust Word Spotting System for Historical Arabic ManuscriptsMohamed Cheriet and Reza Farrahi MoghaddamArabic Text recognition using a Script-Independent Methodology: A Unified HMM-based Approach for Machine-print and Handwritten TextPremkumar Natarajan, Rohit Prasad, Huaigu Cao, Krishna Subramanian, Shirin Saleem, David Belanger, Shiv Vitaladevuni, Matin Kamali and Ehry MacRostieArabic Handwriting Recognition Using VDHMM and Over-SegmentationAmlan Kundu and Tom HinesOnline Arabic Databases and ApplicationsHoucine Boubaker, Abdelkarim Elbaati, Najiba Tagougui, Haikal El Abed, Monji Kherallah and Adel M. AlimiOnline Arabic Handwritten Words Recognition Based on HMM and Combination of Online and Offline FeaturesSherif Abdelazeem, Hesham M. Eraqi and Hany Ahmed

Erscheint lt. Verlag 3.7.2012
Zusatzinfo XX, 592 p.
Verlagsort London
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Document Analysis • hidden Markov models • Neural networks • pattern recognition • Text/Word Recognition
ISBN-10 1-4471-4072-9 / 1447140729
ISBN-13 978-1-4471-4072-6 / 9781447140726
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 19,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65