Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Principles of Data Mining

(Autor)

Buch | Softcover
440 Seiten
2013 | 2nd Revised edition
Springer London Ltd (Verlag)
978-1-4471-4883-8 (ISBN)

Lese- und Medienproben

Principles of Data Mining - Max Bramer
CHF 67,30 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book explains the principal techniques of data mining, for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed examples, with a focus on algorithms rather than mathematical formalism.
Data Mining, the automatic extraction of implicit and potentially useful information from data, is increasingly used in commercial, scientific and other application areas. Principles of Data Mining explains and explores the principal techniques of Data Mining: for classification, association rule mining and clustering. Each topic is clearly explained and illustrated by detailed worked examples, with a focus on algorithms rather than mathematical formalism. It is written for readers without a strong background in mathematics or statistics, and any formulae used are explained in detail. This second edition has been expanded to include additional chapters on using frequent pattern trees for Association Rule Mining, comparing classifiers, ensemble classification and dealing with very large volumes of data. Principles of Data Mining aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field.
Suitable as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science.

Introduction to Data Mining.- Data for Data Mining.- Introduction to Classification: Naive Bayes and Nearest Neighbour.- Using Decision Trees for Classification.- Decision Tree Induction: Using Entropy for Attribute Selection.- Decision Tree Induction: Using Frequency Tables for Attribute Selection.- Estimating the Predictive Accuracy of a Classifier.- Continuous Attributes.- Avoiding Overfitting of Decision Trees.- More About Entropy.- Inducing Modular Rules for Classification.- Measuring the Performance of a Classifier.- Dealing with Large Volumes of Data.- Ensemble Classification.- Comparing Classifiers.- Associate Rule Mining I.- Associate Rule Mining II.- Associate Rule Mining III.- Clustering.- Mining.- Appendix A - Essential Mathematics.- Appendix B - Datasets.- Appendix C - Sources of Further Information.- Appendix D - Glossary and Notation.- Appendix E - Solutions to Self-assessment Exercises.- Index.

Reihe/Serie Undergraduate Topics in Computer Science ; .
Zusatzinfo 101 black & white illustrations, biography
Verlagsort England
Sprache englisch
Maße 156 x 234 mm
Gewicht 635 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Associate Rule Mining • attribute selection • classification • Classifiers • Clustering • Data Mining • DataSets • decision trees • Entropy
ISBN-10 1-4471-4883-5 / 1447148835
ISBN-13 978-1-4471-4883-8 / 9781447148838
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90