Artificial Neural Networks in Pattern Recognition
Springer Berlin (Verlag)
978-3-642-33211-1 (ISBN)
Learning Algorithms.- How to Quantitatively Compare Data Dissimilarities for Unsupervised Machine Learning?- Kernel Robust Soft Learning Vector Quantization.- Incremental Learning by Message Passing in Hierarchical Temporal.- Representative Prototype Sets for Data Characterization and Classification.- Feature Selection by Block Addition and Block Deletion.- Gradient Algorithms for Exploration/Exploitation Trade-Offs: Global and Local Variants.- Towards a Novel Probabilistic Graphical Model of Sequential Data: Fundamental Notions and a Solution to the Problem of Parameter Learning.- Towards a Novel Probabilistic Graphical Model of Sequential Data: A Solution to the Problem of Structure Learning and an Empirical Evaluation.- Statistical Recognition of a Set of Patterns Using Novel Probability Neural Network.- On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition.- Classification of Segmented Objects through a Multi-net Approach.- On Instance Selection in Audio Based Emotion Recognition.- Grayscale Images and RGB Video: Compression by Morphological Neural Network.- NeuCube EvoSpike Architecture for Spatio-temporal Modelling and Pattern Recognition of Brain Signals.
Erscheint lt. Verlag | 7.8.2012 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | X, 245 p. 80 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 397 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Grafik / Design ► Digitale Bildverarbeitung | |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | classification • Learning Algorithms • Neural networks • sequential data • unsupervised machine learning |
ISBN-10 | 3-642-33211-0 / 3642332110 |
ISBN-13 | 978-3-642-33211-1 / 9783642332111 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich