Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Vorlesungen über Grundlagen der Geometrie - Kurt Reidemeister

Vorlesungen über Grundlagen der Geometrie

Buch | Softcover
X, 152 Seiten
2012 | Softcover reprint of the original 1st ed. 1968
Springer Berlin (Verlag)
978-3-642-88673-7 (ISBN)
CHF 76,95 inkl. MwSt
Das vorliegende Buch ist den Grundlagen der linearen Geometrie gewidmet. 1m ersten Teil wird, der Idee des Erlanger Programms von FELIX KLEIN gemaB, die Kongruenz und Invarianz beziiglich beliebiger Gruppen von Transformationen diskutiert und nach Erorterung der Korperaxiome die n-dimensionale lineate Geometrie iiber Schiefkorpem aus den Gruppen linearer Transformationen erkl1irt. DaB der gruppen theoretische Aufbau hier zu den Grundlagen gezahlt ist, wird, hoffe ich, durch die logisch exakten Formulierungen in Kapitell gerechtfertigt. 1m zweiten Teil handelt es sich um die Axiomatik der ebenen linearen Geometrie, im wesentlichen also urn die Auswertung des Satzes von DESARGUES und des Satzes von PASCAL. Die Bedeutung dieser Satze fUr die affine Geometrie ist vor allem durch HILBERTS klassisches Werk iiber die Grundlagen der Geometrie klargestellt. Der DESARGUESSche Satz besagt, daB die Streckenverhaltnisse der Ebene einen Schief korper bilden, der PAscALsche Satz besagt, daB sie einen Korper bilden. Der Beweis fUr diese beiden Tatsachen laBt sich aber auf mannigfache Weise anordnen. Und es erschien mir daher wichtig und lehrreich, dem Grund dieser verschiedenen Moglichkeiten nachzuspiiren. Es muBte sich doch jedes Verkniipfungsgesetz der Streckenrechnung in einem wohlbestimmten SchlieBungssatze sichtbar machen und die logische Ab hangigkeit dieser SchlieBungssatze voneinander feststellen lassen. Gliicklicherweise haben nun diese SchlieBungssatze auch von anderer Seite her Interesse. W. BLASCHKE hat auf dem Mathematiker-KongreB in Bologna die Vermutung ausgesprochen, daB die Theorie der Kurven gewebe auch fUr die Grundlagen der Geometrie fruchtbar werden konnte.

I. Analytischer Aufbau der Geometrie.- 1. Gruppen von Transformationen.- 2. Grundlagen der Algebra.- 3. Affine Geometrie.- II. Axiomatischer Aufbau der Geometrie.- 4. Gewebe und Gruppen.- 5. Die Vektoren der affinen Ebene.- 6. Gewebe und Zahlensysteme.- 7. Affine und projektive Geometrie.

Erscheint lt. Verlag 4.4.2012
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Zusatzinfo X, 152 S.
Verlagsort Berlin
Sprache deutsch
Maße 155 x 235 mm
Gewicht 259 g
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Auswertung • Beweis • Dimension • Ebene • Erlang • Geometrie • Grundlagen der Geometrie • Gruppen • Kongruenz • Kurve • Mathematik • PASCAL • Recht • Transformation • Varianz
ISBN-10 3-642-88673-6 / 3642886736
ISBN-13 978-3-642-88673-7 / 9783642886737
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
how geometry rules the universe

von Shing-Tung Yau; Steve Nadis

Buch | Hardcover (2024)
Basic Books (Verlag)
CHF 43,60