Recent Synthetic Differential Geometry
Springer Berlin (Verlag)
978-3-642-88059-9 (ISBN)
I. Completeness, Finite Dimensionality, Differentiability.- 1. The Theorem of Hopf and Rinow.- 2. Geodesic Completeness. Local Homogeneity.- 3. The Topology of r-Spaces.- 4. Finite-Dimensional G-Spaces.- 5. Differentiability.- II. Desarguesian Spaces.- 6. Similarities.- 7. Imbeddings of Desarguesian Spaces.- 8. A Characterization of Hilbert's and Minkowski's Geometries.- III. Length Preserving Maps.- 9. Shrinkages, Equilong Maps, Local Isometries.- 10. Spaces without Proper Local Isometries.- 11. Proper Equilong Maps.- IV. Geodesics.- 12. Closed Hyperbolic Space Forms.- 13. Axes of Motions and Closed Geodesics.- 14. Plane Inverse Problems. Higher Dimensional Collineation Groups.- 15. One-Dimensional and Discrete Collineation Groups.- 16. Bonnet Angles. Quasi-Hyperbolic Geometry.- 17. Various Aspects of Conjugacy.- V. Motions.- 18. Finite and One-Parameter Groups of Motions.- 19. Transitivity on Pairs of Points and on Geodesies.- VI. Observations on Method and Content.- Literature.
Erscheint lt. Verlag | 11.4.2012 |
---|---|
Reihe/Serie | Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge |
Zusatzinfo | VIII, 112 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 200 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Differentialgeometrie • Differential Geometry • Geometry • Riemannian Geometry • Synthetic Differential Geometry |
ISBN-10 | 3-642-88059-2 / 3642880592 |
ISBN-13 | 978-3-642-88059-9 / 9783642880599 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich