Modern Geometry—Methods and Applications
Springer-Verlag New York Inc.
978-1-4612-8791-9 (ISBN)
1 Homology and Cohomology. Computational Recipes.- §1. Cohomology groups as classes of closed differential forms. Their homotopy invariance.- §2. The homology theory of algebraic complexes.- §3. Simplicial complexes. Their homology and cohomology groups. The classification of the two-dimensional closed surfaces.- §4. Attaching cells to a topological space. Cell spaces. Theorems on the reduction of cell spaces. Homology groups and the fundamental groups of surfaces and certain other manifolds.- §5. The singular homology and cohomology groups. Their homotogy invariance. The exact sequence of a pair. Relative homology groups.- §6. The singular homology of cell complexes. Its equivalence with cell homology. Poincaré duality in simplicial homology.- §7. The homology groups of a product of spaces. Multiplication in cohomology rings. The cohomology theory of H-spaces and Lie groups. The cohomology of the unitary groups.- §8. The homology theory of fibre bundles (skew products).- §9. The extension problem for maps, homotopies, and cross-sections. Obstruction cohomology classes.- §10. Homology theory and methods for computing homotopy groups. The Cartan-Serre theorem. Cohomology operations. Vector bundles.- §11. Homology theory and the fundamental group.- §12. The cohomology groups of hyperelliptic Riemann surfaces. Jacobi tori. Geodesics on multi-axis ellipsoids. Relationship to finite-gap potentials.- §13. The simplest properties of Kähler manifolds. Abelian tori.- §14. Sheaf cohomology.- 2 Critical Points of Smooth Functions and Homology Theory.- §15. Morse functions and cell complexes.- §16. The Morse inequalities.- §17. Morse-Smale functions. Handles. Surfaces.- §18. Poincaré duality.- §19. Critical points of smooth functions and theLyusternik-Shnirelman category of a manifold.- §20. Critical manifolds and the Morse inequalities. Functions with symmetry.- §21. Critical points of functionals and the topology of the path space ?(M).- §22. Applications of the index theorem.- §23. The periodic problem of the calculus of variations.- §24. Morse functions on 3-dimensional manifolds and Heegaard splittings.- §25. Unitary Bott periodicity and higher-dimensional variational problems.- §26. Morse theory and certain motions in the planar n-body problem.- 3 Cobordisms and Smooth Structures.- §27. Characteristic numbers. Cobordisms. Cycles and submanifolds. The signature of a manifold.- §28. Smooth structures on the 7-dimensional sphere. The classification problem for smooth manifolds (normal invariants). Reidemeister torsion and the fundamental hypothesis (Hauptvermutung) of combinatorial topology.- APPENDIX 1 An Analogue of Morse Theory for Many-Valued Functions. Certain Properties of Poisson Brackets.- APPENDIX 2 Plateau’s Problem. Spectral Bordisms and Globally Minimal Surfaces in Riemannian Manifolds.- Errata to Parts I and II.
Reihe/Serie | Graduate Texts in Mathematics ; 124 |
---|---|
Übersetzer | Robert G. Burns |
Zusatzinfo | X, 418 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
ISBN-10 | 1-4612-8791-X / 146128791X |
ISBN-13 | 978-1-4612-8791-9 / 9781461287919 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich