Algorithms in Algebraic Geometry and Applications
Springer Basel (Verlag)
978-3-0348-9908-6 (ISBN)
Zeros, multiplicities, and idempotents for zero-dimensional systems.- On a conjecture of C. Berenstein and A. Yger.- Computation of the splitting fields and the Galois groups of polynomials.- How to compute the canonical module of a set of points.- Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula.- Some effective methods in pseudo-linear algebra.- Gröbner basis and characteristically nilpotent filiform Lie algebras of dimension 10.- Computing multidimensional residues.- The arithmetic of hyperelliptic curves.- Viro's method and T-curves.- A computational method for diophantine approximation.- An effective method to classify nilpotent orbits.- Some algebraic geometry problems arising in the field of mechanism theory.- Enumeration problems in geometry, robotics and vision.- Mixed monomial bases.- The complexity and enumerative geometry of aspect graphs of smooth surfaces.- Aspect graphs of bodies of revolution with algorithms of real algebraic geometry.- Computational conformal geometry.- An algorithm and bounds for the real effective Nullstellensatz in one variable.- Solving zero-dimensional involutive systems.
Erscheint lt. Verlag | 22.9.2011 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | X, 406 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 632 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Algebra • Algebraic Geometry • algorithms • arithmetic • Complexity • Computer • Computer Algebra • Geometry • Gröbner basis • Robotics • Variable |
ISBN-10 | 3-0348-9908-4 / 3034899084 |
ISBN-13 | 978-3-0348-9908-6 / 9783034899086 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich