Mathematics for Computer Graphics (eBook)
XV, 308 Seiten
Springer London (Verlag)
978-1-84996-023-6 (ISBN)
Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed.
All the key areas are covered including: Numbers, Algebra, Trigonometry, Coordinate geometry, Transforms, Vectors, Curves and surfaces, Barycentric coordinates, Analytic geometry. Plus – and unusually in a student textbook – a chapter on geometric algebra is included.
John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD, and other areas of computer graphics. Covering all the mathematical techniques required to resolve geometric problems and design computer programs for computer graphic applications, each chapter explores a specific mathematical topic prior to moving forward into the more advanced areas of matrix transforms, 3D curves and surface patches. Problem-solving techniques using vector analysis and geometric algebra are also discussed. All the key areas are covered including: Numbers, Algebra, Trigonometry, Coordinate geometry, Transforms, Vectors, Curves and surfaces, Barycentric coordinates, Analytic geometry. Plus - and unusually in a student textbook - a chapter on geometric algebra is included.
John Vince has been writing books for 25 years. Previous publications with Springer include: Geometric Algebra: An Algebraic System for Computer Games and Animation Springer, 2009, ISBN 978-1-84882-378-5 Vector Analysis for Computer Graphics Springer, 2007, ISBN 978-1-84628-803-6 Mathematics for Computer Graphics Springer, 2006, ISBN 1-84628-034-6 Introduction to Virtual Reality Springer, 2004, ISBN 1-85233-739-7 More information can be found at http://www.johnvince.co.uk/
Mathematics.- Introduction.- Is Mathematics Difficult?.- Who Should Read this book?.- Aims and Objectives of this Book.- Assumptions Made in this Book.- How to use the Book.- Numbers.- Introduction.- Natural Numbers.- Prime Numbers.- Integers.- Rational Numbers.- Irrational Numbers.- Real Numbers.- The Number Line.- Complex Numbers.- Summary.- Algebra.- Introduction.- Notation.- Algebraic Laws.- Associative Law.- Commutative Law.- Distributive Law.- Solving the Roots of a Quadratic Equation.- Indices.- Laws of Indices.- Examples.- Logarithms.- Further Notation.- Summary.- Trigonometry.- Introduction.- The Trigonometric Ratios.- Example.- Inverse Trigonometric Ratios.- Trigonometric Relationships.- The Sine Rule.- The Cosine Rule.- Compound Angles.- Perimeter Relationships.- Summary.- Cartesian Coordinates.- Introduction.- The Cartesian xy-plane.- Function Graphs.- Geometric Shapes.- Polygonal Shapes.- Areas of Shapes.- Theorem of Pythagoras in 2D.- 3D Coordinates.- Theorem of Pythagoras in 3D.- 3D polygons.- Euler’s Rule.- Summary.- Vectors.- Introduction.- 2D Vectors.- Vector Notation.- Graphical Representation of Vectors.- Magnitude of a Vector.- 3D Vectors.- Vector Manipulation.- Multiplying a Vector by a Scalar.- Vector Addition and Subtraction.- Position Vectors.- Unit Vectors.- Cartesian Vectors.- Vector Multiplication.- Scalar Product.- Example of the Scalar Product.- The Dot Product in Lightening Calculations.- The Scalar Product in Back-Face Detection.- The Vector Product.- The Right-Hand Rule.- Deriving a Unit Normal Vector for a Triangle.- Areas.- Calculating 2D Areas.- Summary.- Transforms.- Introduction.- 2D Transforms.- Translation.- Scaling.- Reflection.- Matrices.- Systems of Notation.- The Determinant of a Matrix.- Homogeneous Coordinates.- 2D Translation.- 2D Scaling.- 2D Reflections.- 2D Shearing.- 2D Rotation.- 2DScaling.- 2D Reflection.- 2D Rotation about an Arbitrary Point.- 3D Transforms.- 3D Translation.- 3D Scaling.- 3D Rotation.- Gimbal Lock.- Rotating about an Axis.- 3D Reflections.- Change of Axes.- 2D Change of Axes.- Direct Cosines.- 3D Change of Axes.- Positioning on the Virtual Camera.- Direction Cosines.- Euler Angles.- Rotating a point about an Arbitrary Axis.- Matrices.- Quaternions.- Adding and Subtracting Quaternions.- Multiplying Quaternions.- Pure Quaternion.- The Inverse Quaternion.- Unit Quaternion.- Rotating Points about an Axis.- Roll, Pitch and Yaw Quaternions.- Quaternions in Matrix Form.- Frames of Reference.- Transforming Vectors.- Determinants.- Perspective Projection.- Summary.- Interpolation.- Introduction.- Linear Interpolation.- Non-Linear Interpolation.- Trigonometric Interpolation.- Cubic Interpolation.- Interpolating Vectors.- Interpolating Quaternions.- Summary.- Curves and Patches.- Introduction.- The Circle.- The Ellipse.- Bezier Curves.- Bernstein Polynomials.- Quadratic Bezier Curves.- Cubic Bernstein Polynominals.- A Recursive Bezier Formula.- Bezier Curves Using Matrices.- Linear Interpolation.- B-Splines.- Continuity.- Non-Uniform B-Splines.- Non-Uniform Rational B-Splines.- Surface Patches.- Planar Surface Patch.- Quadratic Bezier Surface Patch.- Cubic Bezier Surface Patch.- Summary.- Analytical Geometry.- Introduction.- Review of Geometry.- Angles.- Intercept Theorems.- Golden Section.- Triangles.- Centre of Gravity of a Triangle.- Isosceles Triangle.- Equilateral Triangle.- Right Triangle.- Theorem of Thales.- Theorem of Pythagoras.- Quadrilaterals.- Trapezoid.- Parallelogram.- Rhombus.- Regular Polygon (n-gon).- Circle.- 2D Analytical Geometry.- Equation of a Straight Line.- The Hessian Normal Form.- Space Partitioning.- The Hessian Normal Form From Two Points.- Intersection Points.- Intersection Point of Two Straight Lines.- Intersection Point of Two Line Segments.- Point Insi
Erscheint lt. Verlag | 26.1.2010 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Grafik / Design |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | 3D • 3D graphics • Animation • CAD • Computer Animation • Computer Games • Computer Graphics • Interpolation • Mathematics • Partition • reflection • Splines |
ISBN-10 | 1-84996-023-2 / 1849960232 |
ISBN-13 | 978-1-84996-023-6 / 9781849960236 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich