On the Local Structure of Morita and Rickard Equivalences between Brauer Blocks
Springer Basel (Verlag)
978-3-7643-6156-3 (ISBN)
In 1978 Alperin and Broué discovered the Brauer category, and Broué and the author determined the blocks having a nilpotent Brauer category. In 1979, the author discovered the source algebra which determines all the other current invariants, representing faithfully the block - and found its structure in the nilpotent blocks. Recently, the discovery by Rickard that all blocks with the same cyclic defect group and the same Brauer category have the same homotopic category focussed great interest on the new, loose relationship between blocks called Rickard equivalence.
This book describes the source algebra of a block from the source algebra of a Rickard equivalent block and the source of the Rickard equivalence.
1 Introduction.- 2 General notation, terminology and quoted results.- 3 Noninjective induction of OG-interior algebras.- 4 Hecke OG-interior algebras and noninjective induction.- 5 On the local structure of Hecke OG-interior algebras.- 6 Morita stable equivalences between Brauer blocks.- 7 Basic Morita stable equivalences between Brauer blocks.- 8 The Morita stable equivalent class of a nilpotent block.- 9 The differential Z-grading O-algebra.- 10 DG-modules.- 11 D-algebras and DG-interior algebras.- 12 Induction of DG-interior algebras.- 13 Brauer sections in basic induced DG-interior algebras.- 14 Pointed groups on DG-interior algebras and Higman embeddings.- 15 Hecke DG-interior algebras and noninjective induction.- 16 On the local structure of Hecke DG-interior algebras.- 17 Brauer sections in basic Hecke DG-interior algebras.- 18 Rickard equivalences between Brauer blocks.- 19 Basic Rickard equivalences between Brauer blocks.- References.
"The author investigates the behavior of the local structure of a block under Morita equivalences, stable equivalences of Morita type (called Morita stable equivalences here) and Rickard equivalences. The local structure of a block is expressed mainly in terms of its local category (consisting of local pointed groups and their exomorphisms), its Brauer category (consisting of Brauer pairs and their exomorphisms) and its source algebra."
-Zentralblatt Math
Erscheint lt. Verlag | 1.7.1999 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | VII, 261 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 600 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Algebra • classification • Equivalence • Finite • Group • group theory • Gruppe (Math.) • Gruppentheorie • Hardcover, Softcover / Mathematik/Arithmetik, Algebra • HC/Mathematik/Arithmetik, Algebra • Invariant • SET |
ISBN-10 | 3-7643-6156-5 / 3764361565 |
ISBN-13 | 978-3-7643-6156-3 / 9783764361563 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich