Precisely Predictable Dirac Observables (eBook)
XIX, 269 Seiten
Springer Netherland (Verlag)
978-1-4020-5169-2 (ISBN)
This work presents a Clean Quantum Theory of the Electron, based on Dirac's equation. 'Clean' in the sense of a complete mathematical explanation of the well known paradoxes of Dirac's theory and a connection to classical theory. It discusses the existence of an accurate split between physical states belonging to the electron and to the positron as well as the fact that precisely predictable observables must preserve this split.
In this book we are attempting to o?er a modi?cation of Dirac's theory of the electron we believe to be free of the usual paradoxa, so as perhaps to be acceptable as a clean quantum-mechanical treatment. While it seems to be a fact that the classical mechanics, from Newton to E- stein's theory of gravitation, o?ers a very rigorous concept, free of contradictions and able to accurately predict motion of a mass point, quantum mechanics, even in its simplest cases, does not seem to have this kind of clarity. Almost it seems that everyone of its fathers had his own wave equation. For the quantum mechanical 1-body problem (with vanishing potentials) let 1 us focus on 3 di?erent wave equations : (I) The Klein-Gordon equation 3 2 2 2 2 (1) ? ?/?t +(1??)? =0 , ? = Laplacian = ? /?x . j 1 This equation may be written as ? ? (2) (?/?t?i 1??)(?/?t +i 1??)? =0 . Hereitmaybenotedthattheoperator1??hasawellde?nedpositive square root as unbounded self-adjoint positive operator of the Hilbert 2 3 spaceH = L (R ).
Preface. Introduction. 1: Dirac Observables and psi do-s. 1.0 Introduction. 1.1 Some Special Distributions. 1.2. Strictly Classical Pseudodifferential Operators. 1.3. Ellipticity and Parametrix Construction. 1.4. L2-Boundedness and Weighted Sobolev Spaces 1.5. The Parametrix Method for Solving ODE-s 1.6. More on General psi do-Results. 2: Why Should Observables be Pseudodifferential? 2.0. Introduction. 2.1. Smoothness of Lie Group Action on psi do-s. 2.2. Rotation and Dilation Smoothness. 2.3. General Order and General H3-Spaces. 2.4. A Useful Result on L2-Inverses and Square Roots. 3: Decoupling with psi do-s. 3.0. Introduction. 3.1. The Foldy-Wouthuysen Transform. 3.2. Unitary Decoupling Modulo O (-infinity). 3.3. Relation to Smoothness of the Heisenberg Transform. 3.4. Some Comments Regarding Spectral Theory. 3.5. Complete Decoupling for V(x) not equivalent to 0. 3.6. Split and Decoupling are not Unique - Summary. 3.7. Decoupling for Time Dependent Potentials. 4: Smooth Pseudodifferential Heisenberg Representation. 4.0. Introduction. 4.1. Dirac Evolution with Time-Dependent Potentials. 4.2. Observables with Smooth Heisenberg Representation. 4.3. Dynamical Observables with Scalar Symbol. 4.4. Symbols Non-Scalar on S plusminus. 4.5. Spin and Current. 4.6. Classical Orbits for Particle and Spin. 5: The Algebra of Precisely Predictable Observables. 5.0. Introduction. 5.1. A Precise Result on psi do-Heisenberg Transforms. 5.2. Relations between the Algebras P(t). 5.3. About Prediction of Observables again. 5.4. Symbol Propagation along Flows. 5.5. The Particle Flows Components are Symbols. 5.6. A Secondary Correction for the Electrostatical Potential. 5.7. Smoothness and FW-Decoupling. 5.8. The Final Algebra of Precisely Predictables. 6: Lorentz Covariance of Precise Predictability. 6.0. Introduction. 6.1. A New Time Frame for a Dirac State. 6.2. Transformation of P and PX for Vanishing Fields. 6.3. Relating Hilbert Spaces; Evolution of the Spaces H' and H. 6.4. The General Time-Independent Case. 6.5. The Fourier Integral Operators around R. 6.6. Decoupling with Respect to H' and H(t). 6.7. A Complicated ODE with psi do-Coefficients. 6.8 Integral Kernels of e-functions. 7: Spectral Theory of Precisely Predictable Approximations. 7.0. Introduction. 7.1. A Second Order Model Program. 7.2. The Corrected Location Observable. 7.3. Electrostatic Potential and Relativistic Mass. 7.4. Separation of Variables in Spherical Coordinates. 7.5. Highlights of the Proof of Theorem 7.3.2. 7.6. The Regular Singularities. 7.7. The Singularity at infinity. 7.8. Final Arguments. 8: Dirac and Schrödinger Equations; a Comparison. 8.0. Introduction. 8.1. What is a C*-Algebra with Symbol? 8.2. Exponential Actions on A. 8.3. Strictly Classical Pseudodifferential Operators. 8.4. Characteristic Flow and Particle Flow. 8.5. The Harmonic Oscillator. References. General Notations. Index.
Erscheint lt. Verlag | 10.1.2007 |
---|---|
Reihe/Serie | Fundamental Theories of Physics | Fundamental Theories of Physics |
Zusatzinfo | XIX, 269 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik | |
Schlagworte | Albert Einstein • Foldy-Wouthuysen • Heisenberg • Potential • Pseudodifferential • Schrödinger equations • Sobolev and Hilbert spaces |
ISBN-10 | 1-4020-5169-7 / 1402051697 |
ISBN-13 | 978-1-4020-5169-2 / 9781402051692 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich