Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Pattern Recognition -  Konstantinos Koutroumbas,  Sergios Theodoridis

Pattern Recognition (eBook)

eBook Download: PDF
2003 | 2. Auflage
689 Seiten
Elsevier Science (Verlag)
978-0-08-051362-1 (ISBN)
Systemvoraussetzungen
55,73 inkl. MwSt
(CHF 54,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
*Approaches pattern recognition from the designer's point of view
*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere
*Supplemented by computer examples selected from applications of interest

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. This volume's unifying treatment covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to learn. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.

*Approaches pattern recognition from the designer's point of view
*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere
*Supplemented by computer examples selected from applications of interest
Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "e;learn"e; -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest

Cover 1
CONTENTS 6
Preface 14
Chapter 1. INTRODUCTION 16
1.1 Is Pattern Recognition Important? 16
1.2 Features, Feature Vectors, and Classifiers 18
1.3 Supervised Versus Unsupervised Pattern Recognition 21
1.4 Outline of the Book 23
Chapter 2. CLASSIFIERS BASED ON BAYES DECISION THEORY 28
2.1 Introduction 28
2.2 Bayes Decision Theory 28
2.3 Discriminant Functions and Decision Surfaces 34
2.4 Bayesian Classification for Normal Distributions 35
2.5 Estimation of Unknown Probability Density Functions 42
2.6 The Nearest Neighbor Rule 59
Chapter 3. LINEAR CLASSIFIERS 70
3.1 Introduction 70
3.2 Linear Discriminant Functions and Decision Hyperplanes 70
3.3 The Perceptron Algorithm 72
3.4 Least Squares Methods 80
3.5 Mean Square Estimation Revisited 87
3.6 Support Vector Machines 92
Chapter 4. NONLINEAR CLASSIFIERS 108
4.1 Introduction 108
4.2 The XOR Problem 108
4.3 The Two-Layer Perceptron 109
4.4 Three-Layer Perceptrons 116
4.5 Algorithms Based on Exact Classification of the Training Set 117
4.6 The Backpropagation Algorithm 119
4.7 Variations on the Backpropagation Theme 127
4.8 The Cost Function Choice 130
4.9 Choice of the Network Size 133
4.10 A Simulation Example 139
4.11 NetworksWithWeight Sharing 141
4.12 Generalized Linear Classifiers 142
4.13 Capacity of the l-Dimensional Space in Linear Dichotomies 144
4.14 Polynomial Classifiers 146
4.15 Radial Basis Function Networks 148
4.16 Universal Approximators 152
4.17 Support Vector Machines: The Nonlinear Case 154
4.18 Decision Trees 158
4.19 Discussion 165
Chapter 5. FEATURE SELECTION 178
5.1 Introduction 178
5.2 Preprocessing 179
5.3 Feature Selection Based on Statistical Hypothesis Testing 181
5.4 The Receiver Operating Characteristics CROC Curve 188
5.5 Class Separability Measures 189
5.6 Feature Subset Selection 196
5.7 Optimal Feature Generation 202
5.8 Neural Networks and Feature Generation/Selection 206
5.9 A Hint on the Vapnik–Chernovenkis Learning Theory 208
Chapter 6. FEATURE GENERATION I: LINEAR TRANSFORMS 222
6.1 Introduction 222
6.2 Basis Vectors and Images 223
6.3 The Karhunen–Loève Transform 225
6.4 The Singular Value Decomposition 230
6.5 Independent Component Analysis 234
6.6 The Discrete Fourier Transform (DFT) 241
6.7 The Discrete Cosine and Sine Transforms 245
6.8 The Hadamard Transform 246
6.9 The Haar Transform 248
6.10 The Haar Expansion Revisited 250
6.11 Discrete TimeWavelet Transform (DTWT) 254
6.12 The Multiresolution Interpretation 264
6.13 Wavelet Packets 267
6.14 A Look at Two-Dimensional Generalizations 267
6.15 Applications 270
Chapter 7. FEATURE GENERATION II 284
7.1 Introduction 284
7.2 Regional Features 285
7.3 Features for Shape and Size Characterization 309
7.4 A Glimpse at Fractals 318
Chapter 8. TEMPLATE MATCHING 336
8.1 Introduction 336
8.2 Measures Based on Optimal Path Searching Techniques 337
8.3 Measures Based on Correlations 352
8.4 Deformable Template Models 358
Chapter 8. TEMPLATE MATCHING 336
8.1 Introduction 336
8.2 Measures based on optimal path searching techniques 337
8.3 Measures based on correlations 352
8.4 Deformable template models 358
Chapter 9. CONTEXT-DEPENDENT CLASSIFICATION 366
9.1 Introduction 366
9.2 The Bayes Classifier 366
9.3 Markov Chain Models 367
9.4 The Viterbi Algorithm 368
9.5 Channel Equalization 371
9.6 Hidden Markov Models 376
9.7 Training Markov Models via Neural Networks 388
9.8 A discussion of Markov Random Fields 390
Chapter 10. SYSTEM EVALUATION 400
10.1 Introduction 400
10.2 Error Counting Approach 400
10.3 Exploiting the Finite Size of the Data Set 402
10.4 A Case Study From Medical Imaging 405
Chapter 11. CLUSTERING: BASIC CONCEPTS 412
11.1 Introduction 412
11.2 Proximity Measures 419
Chapter 12. CLUSTERING ALGORITHMS I: SEQUENTIAL ALGORITHMS 444
12.1 Introduction 444
12.2 Categories of Clustering Algorithms 446
12.3 Sequential Clustering Algorithms 448
12.4 A Modification of BSAS 452
12.5 ATwo-Threshold Sequential Scheme 453
12.6 Refinement Stages 456
12.7 Neural Network Implementation 458
Chapter 13. CLUSTERING ALGORITHMS II: HIERARCHICAL ALGORITHMS 464
13.1 Introduction 464
13.2 Agglomerative Algorithms 465
13.3 The Cophenetic Matrix 491
13.4 Divisive Algorithms 493
13.5 Choice of the Best Number of Clusters 495
Chapter 14. CLUSTERING ALGORITHMS III: SCHEMES BASED ON FUNCTION OPTIMIZATION 504
14.1 Introduction 504
14.2 Mixture Decomposition Schemes 506
14.3 Fuzzy Clustering Algorithms 515
14.4 Possibilistic Clustering 537
14.5 Hard Clustering Algorithms 544
14.6 Vector Quantization 548
Chapter 15. CLUSTERING ALGORITHMS IV 560
15.1 Introduction 560
15.2 Clustering Algorithms Based on Graph Theory 560
15.3 Competitive Learning Algorithms 567
15.4 Branch and Bound Clustering Algorithms 576
15.5 Binary Morphology Clustering Algorithms (BMCAs) 579
15.6 Boundary Detection Algorithms 588
15.7 Valley-Seeking Clustering Algorithms 591
15.8 Clustering Via Cost Optimization (Revisited) 593
15.9 Clustering Using Genetic Algorithms 597
15.10 Other Clustering Algorithms 598
Chapter 16. CLUSTER VALIDITY 606
16.1 Introduction 606
16.2 Hypothesis Testing Revisited 607
16.3 Hypothesis Testing in Cluster Validity 609
16.4 Relative Criteria 620
16.5 Validity of Individual Clusters 636
16.6 Clustering Tendency 639
Appendix A: Hints from Probability and Statistics 658
Appendix B: Linear Algebra Basics 670
Appendix C: Cost Function Optimization 674
Appendix D: Basic Definitions from Linear Systems Theory 692
Index 696

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20