Microbial Biosorption of Metals (eBook)
XI, 329 Seiten
Springer Netherland (Verlag)
978-94-007-0443-5 (ISBN)
Heavy metals always pose serious ecological risks when released into the environment due to their elemental non-degradable nature, regardless of their chemical form. This calls for the development of efficient and low-cost effluent treatment and metal recuperation technologies for contaminated waste water, not only because regulatory limits need to be met but also because the waste itself can be a resource for certain precious metals.
Biosorption is a general property of living and dead biomass to rapidly bind and abiotically concentrate inorganic or organic compounds from even very diluted aqueous solutions. As a specific term, biosorption is a method that utilizes materials of biological origin - biosorbents formulated from non-living biomass - for the removal of target substances from aqueous solutions. Recent research on biosorption provides a solid understanding of the mechanism underlying microbial biosorption of heavy metals and related elements.
This book gathers review articles analyzing current views on the mechanism and (bio)chemistry of biosorption, the performance of bacterial, fungal and algal biomass, and the practical aspects of biosorbent preparation and engineering. It also reviews the physico-chemical evaluations of biosorbents and modelling of the process as well as the importance of biosorption during heavy metal removal using living cells. It is a reference work for scientists, environmental safety engineers and R&D specialists who wish to further promote biosorption research and use the accumulated knowledge to develop and build industrial applications of biosorption in heavy metal separation technologies.
Heavy metals always pose serious ecological risks when released into the environment due to their elemental non-degradable nature, regardless of their chemical form. This calls for the development of efficient and low-cost effluent treatment and metal recuperation technologies for contaminated waste water, not only because regulatory limits need to be met but also because the waste itself can be a resource for certain precious metals. Biosorption is a general property of living and dead biomass to rapidly bind and abiotically concentrate inorganic or organic compounds from even very diluted aqueous solutions. As a specific term, biosorption is a method that utilizes materials of biological origin - biosorbents formulated from non-living biomass - for the removal of target substances from aqueous solutions. Recent research on biosorption provides a solid understanding of the mechanism underlying microbial biosorption of heavy metals and related elements. This book gathers review articles analyzing current views on the mechanism and (bio)chemistry of biosorption, the performance of bacterial, fungal and algal biomass, and the practical aspects of biosorbent preparation and engineering. It also reviews the physico-chemical evaluations of biosorbents and modelling of the process as well as the importance of biosorption during heavy metal removal using living cells. It is a reference work for scientists, environmental safety engineers and R&D specialists who wish to further promote biosorption research and use the accumulated knowledge todevelop and build industrial applications of biosorption in heavy metal separation technologies.
Preface 5
Contents 6
Contributors 8
Microbial Biosorption of Metals - General Introduction 11
1.1 Brief View on Conventional Waste Stream Treatments 11
1.2 Bio-based Methods for Waste Water Treatment and Environment Restoration 13
1.3 Future Thrusts in Biosorption 15
References 15
Potential of Biosorption Technology 17
2.1 Significance of Metal Recovery—Industrial and Environmental View 17
2.2 Biosorption—A Suitable Approach for Heavy Metal Removal 21
2.3 Conclusions 24
References 25
The Mechanism of Metal Cation and Anion Biosorption 28
3.1 Introduction 29
3.2 Metal Biosorption and Bioaccumulation 30
3.3 Speciation of Elements in Solution 31
3.3.1 Speciation Examples: Anions and Cations 32
3.3.1.1 Chromate in Solution 32
3.3.1.2 Vanadate in Solution 34
3.3.1.3 Gold-Cyanide in Solution 34
3.3.1.4 Uranium Speciation and Complex Binding 35
3.3.2 Computerized Systems for Assessing Speciation (MINEQL+) 38
3.4 Sorption Mechanims of Anionic and Cationic Toxic Compounds in Solution 40
3.4.1 Metal Complexation and Chelation 40
3.4.1.1 Complexation 40
3.4.1.2 Coordination 42
3.4.1.3 Chelation of Metals 43
3.4.2 Biosorbents 44
3.4.2.1 Biosorbent Metal Selectivity 46
3.4.2.2 Biosorption by Bacteria 46
3.4.2.3 Biosorption by Fungi 48
3.4.2.4 Sorption by Chitinuous Biomass 52
3.4.3 Biosorption Mechanisms 53
3.4.3.1 Ion Exchange 53
3.4.3.2 Adsorption 54
3.4.3.3 Inorganic Microprecipitation 55
3.4.3.4 The Mechanism of Biosorption 55
3.4.3.5 Overall Mechanisms—Ion Exchange, Adsorption, Micro-precipitation 59
3.4.3.6 Contribution of Electrostatic Attraction and Complexation 61
3.4.3.7 Binding Sites 61
3.4.4 Instrumental Analysis 63
References 64
Equilibrium, Kinetic and Dynamic Modelling of Biosorption Processes 68
4.1 Introduction 69
4.2 Equilibrium Models 70
4.2.1 Empirical Models 71
4.2.1.1 Empirical Models for Single Metal Systems 72
4.2.1.2 Empirical Models for Multi-Metal Systems 75
4.2.1.3 Statistical Discrimination of Empirical Models 80
4.2.2 Mechanistic Models 83
4.2.2.1 Mechanistic Models Including a Chemical Reaction Scheme 84
4.2.2.2 Mechanistic Models Accounting for Electrostatic Corrections 91
4.2.2.3 Continuous Models 98
4.3 Kinetic Studies in Batch Tests 102
4.3.1 Empirical Kinetic Models 103
4.3.1.1 Pseudo-First Order Model 103
4.3.1.2 Pseudo-Second Order Model 104
4.3.1.3 Other Empirical Kinetic Models 105
4.3.2 Assessing Mass Transfer Effects and Controlling Mechanisms 105
4.3.2.1 Weber and Morris Model 105
4.3.2.2 Boyd Plots 106
4.3.3 Mass Transfer Models 106
4.4 Dynamic Behaviour in Continuous Processes 110
4.4.1 Fixed Bed Reactors 110
4.4.1.1 Approximate Models 111
4.4.1.2 Mass Transfer Models 114
4.4.2 Membrane Reactors 116
4.5 Conclusions 119
References 121
Bacterial Biosorption and Biosorbents 130
5.1 Introduction 130
5.2 Bacterial Structure and Components Responsible for Biosorption Ability 131
5.2.1 Mechanism of Bacterial Biosorption 132
5.3 Characterization of Bacterial Surface 133
5.4 Preparation of Bacterial Biosorbents 136
5.4.1 Chemically Modified Biosorbents 136
5.4.2 Genetically Modified Biosorbents 137
5.4.3 Immobilized Biosorbents 138
5.5 Some Case Studies of Bacterial Biosorbents 140
5.6 Conclusions 145
References 145
Fungal Biosorption and Biosorbents 151
6.1 Introduction 151
6.2 Metal Ion Uptake and Biosorption Equilibria 152
6.3 Metal Uptake by Fungal Biomass 155
6.4 Use of Immobilized Fungal Biomass in Biosorption 160
6.5 Regeneration of Fungal Biomass and Elution of Biosorbed Metals 160
6.6 Biosorption Mechanisms 161
6.7 Application to Practice 162
6.8 Future Research Needs 162
References 163
Algal Biosorption and Biosorbents 167
7.1 Introduction 168
7.1.1 A Few Words About Taxonomy 168
7.1.2 Algae Habitat and Uses 168
7.2 Types of Algae 171
7.2.1 The Biodiversity of Algae: Classification 171
7.2.2 Algal Metal Binding Sites 174
7.3 Comparative Study on Metal Sorption Uptakes and Affinities by Different Types of Algae 176
7.4 Pretreatment of Algal Biomass 180
7.5 Comparison with Other Biosorbents and Future Perspectives 182
References 184
Removal of Rare Earth Elements and Precious Metal Species by Biosorption 187
8.1 Introduction 187
8.2 Rare Earth Elements and Precious Metal Species 188
8.2.1 Rare Earth Elements 188
8.2.2 Precious Metals 189
8.3 Biosorption Capacities 190
8.4 Biosorbent Characteristics and Metal Binding 193
8.5 Sorption Modelling in Batch Reactor 195
8.6 Effects of Competing Ions 197
8.7 Adsorption in Dynamic Reactors 198
8.8 Pilot Scale Studies 200
8.9 Conclusion 201
References 201
Biosorption and Metal Removal Through Living Cells 205
9.1 Introduction 206
9.2 Bacterial Immobilization of Metals in Solutions 209
9.2.1 Immobilization of Metals by Bioprecipitation 209
9.2.2 Immobilization of Metals by Reductive Transformation 211
9.3 Mixed-Function Consortia in Bioremediation of Heavy Metals from Water 214
9.3.1 Activated Sludge in Heavy Metal Removal 214
9.3.2 Heavy Metal Removal Capacity of Artificial Wetlands 215
9.4 Accumulation of Heavy Metals by Different Plant Species 218
9.4.1 Phytoremediation Concept 218
9.4.2 Hyperaccumulating Plants 219
9.4.3 Potential of Phytorhizofiltration for Waste Water Cleanup from Heavy Metals 224
9.4.4 Improving Metal Accumulation by Plants Through Genetic Modifications 225
9.5 Conclusions 229
References 230
Yeast Biosorption and Recycling of Metal Ions by Cell Surface Engineering 242
10.1 Introduction 243
10.2 Metal Uptake and Microbial Biosorption: Why Use Yeasts? 244
10.3 Emerging Strategy of Metal Biosorption: Cell Surface Engineering 245
10.4 Metal Biosorption by Cell Surface Display of Metal-Binding Proteins on Yeast 247
10.5 Biosorption and Recycling of Rare Metal Ions by Cell Surface-Engineered Yeast 250
10.6 Conclusions 252
References 253
Bacterial Surface Display of Metal-Binding Sites 255
11.1 Introduction 256
11.2 Brief History of Bacterial Cell-Surface Display 256
11.3 Biology and Potential of Useful Bacterial Surface Display Systems 258
11.3.1 Systems for Gram-Negative Bacteria 258
11.3.1.1 Outer Membrane Proteins for Surface Display 259
11.3.1.2 Autotransporters 260
11.3.1.3 Lipoproteins 261
11.3.1.4 S-layer Proteins 262
11.3.1.5 Subunits of Surface Appendages 263
11.3.2 Systems for Gram-Positive Bacteria 263
11.3.2.1 Covalently Bound Proteins 264
11.3.2.2 Cell Wall-Associated Proteins and Flagella 265
11.4 Sources of Metal-Binding Peptides 266
11.4.1 What Can We Learn from the Coordination Preferences of Metal Ions? 266
11.4.1.1 Metal-Binding Sites in Metalloproteins 266
11.4.1.2 The Nature and Essential Characteristics of the Binding of Metal Ions in Proteins 266
11.4.2 Natural Metal-Binding Peptides 267
11.4.3 Molecular Design In Silico 269
11.4.3.1 Enhancing the Metal-Binding Properties of the Proteins 269
11.4.3.2 Quantum Chemical Studies of the Interactions of Metal Ions with Biologically Relevant Functional Groups 269
11.4.3.3 Merging the Protein Fragments into One Polypeptide Chain 270
11.5 Survey of Bacterial Surface Displays for Enhanced Metallosorption 271
11.5.1 Cadmium Uptake with Surface-Engineered Bacteria 274
11.5.2 Mercury Uptake with Surface-Engineered Bacteria 276
11.5.3 Uptake of Copper, Zinc, Chromium, Lead and Nickel by Surface-Engineered Bacteria 277
11.6 Concluding Remarks 278
References 280
Immobilized Biosorbents for Bioreactors and Commercial Biosorbents 290
12.1 Introduction: Requirements for Industrial Biosorbents 290
12.2 Development of Biosorbent Materials: Methods of Immobilisation 293
12.2.1 Creation of Biofilm 295
12.2.2 Development of Biosorbent Particles 296
12.2.2.1 Immobilisation by Cross-Linkage 297
12.2.2.2 Immobilisation by Entrapment Method 297
12.3 Reactors for Biosorption and Desorption Process 298
12.3.1 Packed Bed Columns 298
12.3.2 Fluidized Bed Columns 301
12.4 Application of Biosorption: Commercial Biosorbents 302
References 303
Magnetically Responsive Biocomposites for Inorganic and Organic Xenobiotics Removal 306
13.1 Introduction 306
13.2 Biosorption 308
13.3 Magnetic Biocomposite Materials and Magnetic Separation Processes 309
13.4 Magnetic Biocomposite Materials for Xenobiotics Removal 311
13.4.1 Magnetic Biopolymers 311
13.4.2 Magnetic Plant Derivatives 315
13.4.3 Magnetically Modified Microbial and Algae Cells 317
13.5 Concluding Remarks 322
References 322
Index 326
Erscheint lt. Verlag | 13.1.2011 |
---|---|
Zusatzinfo | XI, 329 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie | |
Naturwissenschaften ► Biologie ► Mikrobiologie / Immunologie | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Naturwissenschaften ► Chemie ► Physikalische Chemie | |
Technik ► Umwelttechnik / Biotechnologie | |
Schlagworte | Biosorption mechanism • Biosorption models • Heavy metals • Microbial biosorbent • Wastewater Treatment • Water Quality and Water Pollution |
ISBN-10 | 94-007-0443-7 / 9400704437 |
ISBN-13 | 978-94-007-0443-5 / 9789400704435 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich