Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Computational Methods for Counterterrorism (eBook)

Shlomo Argamon, Newton Howard (Herausgeber)

eBook Download: PDF
2009 | 2009
XVIII, 306 Seiten
Springer Berlin (Verlag)
978-3-642-01141-2 (ISBN)

Lese- und Medienproben

Computational Methods for Counterterrorism -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Modern terrorist networks pose an unprecedented threat to international security. The question of how to neutralize that threat is complicated radically by their fluid, non-hierarchical structures, religious and ideological motivations, and predominantly non-territorial objectives. Governments and militaries are crafting new policies and doctrines to combat terror, but they desperately need new technologies to make these efforts effective.

This book collects a wide range of the most current computational research that addresses critical issues for countering terrorism, including:

  • Finding, summarizing, and evaluating relevant information from large and changing data stores;
  • Simulating and predicting enemy acts and outcomes; and
  • Producing actionable intelligence by finding meaningful patterns hidden in huge amounts of noisy data.

The book's four sections describe current research on discovering relevant information buried in vast amounts of unstructured data; extracting meaningful information from digitized documents in multiple languages; analyzing graphs and networks to shed light on adversaries' goals and intentions; and developing software systems that enable analysts to model, simulate, and predict the effects of real-world conflicts.

The research described in this book is invaluable reading for governmental decision-makers designing new policies to counter terrorist threats, for members of the military, intelligence, and law enforcement communities devising counterterrorism strategies, and for researchers developing more effective methods for knowledge discovery in complicated and diverse datasets.



Shlomo Argamon is Associate Professor of Computer Science at the Illinois Institute of Technology, Chicago, IL, USA, since 2002. Prior to that, he had held academic positions at Bar-Ilan University, where he held a Fulbright Postdoctoral Fellowship (1994-96), and at the Jerusalem College of Technology. Dr. Argamon received his B.S. (1988) in Applied Mathematics from Carnegie-Mellon University, and his M.Phil. (1991) and Ph.D. (1994) in Computer Science from Yale University, where he was a Hertz Foundation Fellow. His current research interests lie mainly in the use of machine learning methods to aid in functional analysis of natural language, with particular focus on questions of style. During his career, Dr. Argamon has worked on a variety of problems in experimental machine learning, including robotic map-learning, theory revision, and natural language processing, and has published numerous research papers in these areas.

Shlomo Argamon is Associate Professor of Computer Science at the Illinois Institute of Technology, Chicago, IL, USA, since 2002. Prior to that, he had held academic positions at Bar-Ilan University, where he held a Fulbright Postdoctoral Fellowship (1994-96), and at the Jerusalem College of Technology. Dr. Argamon received his B.S. (1988) in Applied Mathematics from Carnegie-Mellon University, and his M.Phil. (1991) and Ph.D. (1994) in Computer Science from Yale University, where he was a Hertz Foundation Fellow. His current research interests lie mainly in the use of machine learning methods to aid in functional analysis of natural language, with particular focus on questions of style. During his career, Dr. Argamon has worked on a variety of problems in experimental machine learning, including robotic map-learning, theory revision, and natural language processing, and has published numerous research papers in these areas.

Computational Methods for Counterterrorism 2
Foreword 6
James A. Hendler 6
Preface 8
Part I Information Access 18
1 On Searching in the ``Real World'' 19
2 Signature-Based Retrieval of Scanned Documents Using Conditional Random Fields 33
3 What Makes a Good Summary? 49
4 A Prototype Search Toolkit 67
Part II Text Analysis 81
5 Unapparent Information Revelation: Text Mining for Counterterrorism 82
6 Identification of Sensitive Unclassified Information 103
7 Rich Language Analysis for Counterterrorism 123
Part III Graphical Models 135
8 Dicliques: Finding Needles in Haystacks 136
9 Information Superiority via Formal Concept Analysis 156
10 Reflexive Analysis of Groups 185
11 Evaluating Self-Reflexion Analysis Using Repertory Grids 223
Part IV Conflict Analysis 238
12 Anticipating Terrorist Safe Havens from Instability Induced Conflict 239
13 Applied Counterfactual Reasoning 259
14 Adversarial Planning in Networks 273
Introduction 273
Adversarial planning by a single agent 274
Adversarial planning in networks 277
References 283
15 Gaming and Simulating Ethno-Political Conflicts 285
Introduction and purpose 285
Socio-cultural game theory 286
Agent personality, emotions, culture, and reactions 289
Agent decision making 292
Modeling follower value systems 294
Socio-cultural game results to date: Turing, correspondence, and senstivity testing 295
Correspondence test 296
Setting up the testbed and tuning it with the training dataset 298
Running the simulation 299
Validation 301
Sensitivity analysis 302
Lessons learned and next steps 304
References 306
Appendix I 307
Appendix II 309
Index 312

Erscheint lt. Verlag 18.6.2009
Zusatzinfo XVIII, 306 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Sozialwissenschaften Politik / Verwaltung
Schlagworte ACCESS • Artificial Intelligence • counterterrorism • Data Mining • formal concept analysis • Information Retrieval • Knowledge Discovery • Networks • security • terrorism • Terrorist • text analyis • Text Mining • text search
ISBN-10 3-642-01141-1 / 3642011411
ISBN-13 978-3-642-01141-2 / 9783642011412
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Methodische Kombination von IT-Strategie und IT-Reifegradmodell

von Markus Mangiapane; Roman P. Büchler

eBook Download (2024)
Springer Vieweg (Verlag)
CHF 41,95
Das umfassende Handbuch

von Michael Kofler; Klaus Gebeshuber; Peter Kloep …

eBook Download (2022)
Rheinwerk Computing (Verlag)
CHF 48,75