Algebraic Geometry over the Complex Numbers
Springer-Verlag New York Inc.
978-1-4614-1808-5 (ISBN)
Donu Arapura is a Professor of Mathematics at Purdue University. He received his Ph.D. from Columbia University in 1985. Dr. Arapura’s primary research includes algebraic geometry, and he has written and co-written several publications ranging from Hodge cycles to cohomology.
Preface.- 1. Plane Curves.- 2. Manifolds and Varieties via Sheaves.- 3. More Sheaf Theory.- 4. Sheaf Cohomology.- 5. de Rham Cohomoloy of Manifolds.- 6. Riemann Surfaces.- 7. Simplicial Methods.- 8. The Hodge Theorem for Riemann Manifolds.- 9. Toward Hodge Theory for Complex Manifolds.- 10. Kahler Manifolds.- 11. A Little Algebraic Surface Theory.- 12. Hodge Structures and Homological Methods.- 13. Topology of Families.- 14. The Hard Lefschez Theorem.- 15. Coherent Sheaves.- 16. Computation of Coherent Sheaves.- 17. Computation of some Hodge numbers.- 18. Deformation Invariance of Hodge Numbers.- 19. Analogies and Conjectures.- References.- Index.
Reihe/Serie | Universitext |
---|---|
Zusatzinfo | 1 Illustrations, color; 16 Illustrations, black and white; XII, 329 p. 17 illus., 1 illus. in color. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebraic Geometry • algebraic variety • Algebraische Geometrie • complex manifold • complex numbers • Hodge Theory • sheaf • sheaf-theoretic method |
ISBN-10 | 1-4614-1808-9 / 1461418089 |
ISBN-13 | 978-1-4614-1808-5 / 9781461418085 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich