p-Adic Lie Groups
Springer Berlin (Verlag)
978-3-642-21146-1 (ISBN)
Introduction.- Part A: p-Adic Analysis and Lie Groups.- I.Foundations.- I.1.Ultrametric Spaces.- I.2.Nonarchimedean Fields.- I.3.Convergent Series.- I.4.Differentiability.- I.5.Power Series.- I.6.Locally Analytic Functions.- II.Manifolds.- II.7.Charts and Atlases.- II.8.Manifolds.- II.9.The Tangent Space.- II.10.The Topological Vector Space C^an(M,E), part 1.- II.11 Locally Convex K-Vector Spaces.- II.12 The Topological Vector Space C^an(M,E), part 2.- III.Lie Groups.- III.13.Definitions and Foundations.- III.14.The Universal Enveloping Algebra.- III.15.The Concept of Free Algebras.- III.16.The Campbell-Hausdorff Formula.- III.17.The Convergence of the Hausdorff Series.- III.18.Formal Group Laws.- Part B:The Algebraic Theory of p-Adic Lie Groups.- IV.Preliminaries.- IV.19.Completed Group Rings.- IV.20.The Example of the Group Z^d_p.- IV.21.Continuous Distributions.- IV.22.Appendix: Pseudocompact Rings.- V.p-Valued Pro-p-Groups.- V.23.p-Valuations.- V.24.The free Group on two Generators.- V.25.The Operator P.- V.26.Finite Rank Pro-p-Groups.- V.27.Compact p-Adic Lie Groups.- VI.Completed Group Rings of p-Valued Groups.- VI.28.The Ring Filtration.- VI.29.Analyticity.- VI.30.Saturation.- VII.The Lie Algebra.- VII.31.A Normed Lie Algebra.- VII.32.The Hausdorff Series.- VII.33.Rational p-Valuations and Applications.- VII.34.Coordinates of the First and of the Second Kind.- References.- Index.
From the reviews:
"The book is divided into two parts ... . The author's style of writing is elegant ... . this is a demanding book, but a rewarding one ... . any person who intends to work in this area will want to have it close at hand." (Mark Hunacek, The Mathematical Gazette, Vol. 98 (541), March, 2014)
"This book presents the foundations of the theory of p-adic Lie groups in a systematic and self-contained way. ... Schneider's book on p-adic Lie groups systematically develops the analytic theory of p-adic Lie groups and also Lazard's algebraic approach to p-adic Lie groups. It is highly recommended." (Dubravka Ban, Mathematical Reviews, Issue 2012 h)
"The notion of a p-adic Lie group has been around for a while, but they have recently become more prominent in number theory and representation theory. ... Schneider's Grundlehren volume is an attempt to fill that gap by giving a systematic treatment of the subject. ... this is a book to be welcomed and studied carefully by anyone who wants to learn about p-adic Lie theory." (Fernando Q. Gouvêa, The Mathematical Association of America, August, 2011)
"The book thoroughly discusses the analytic aspects of p-adic manifolds and p-adic lie groups. ... this clearly written book by Schneider will be very useful ... to all those interested learning the basic theory of p-adic groups or about the completed group ring of a p-adic group with number theoretical applications in mind." (Bala Sury, Zentralblatt MATH, Vol. 1223, 2011)
Erscheint lt. Verlag | 12.6.2011 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | XII, 256 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 535 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | 22E20, 16S34 • completed group ring • Lie group • Liesche Algebren/Gruppen • locally analytic manifold • p-adic • p-valuation |
ISBN-10 | 3-642-21146-1 / 3642211461 |
ISBN-13 | 978-3-642-21146-1 / 9783642211461 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich