Transformation Groups in Differential Geometry
Springer Berlin (Verlag)
978-3-540-58659-3 (ISBN)
3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In
8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip
5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
Shoshichi Kobayashi was born January 4, 1932 in Kofu, Japan. After obtaining his mathematics degree from the University of Tokyo and his Ph.D. from the University of Washington, Seattle, he held positions at the Institute for Advanced Study, Princeton, at MIT and at the University of British Columbia between 1956and 1962, and then moved to the University of California, Berkeley, where he is now Professor in the Graduate School.
I. Automorphisms of G-Structures.- 1. G -Structures.- 2. Examples of G-Structures.- 3. Two Theorems on Differentiable Transformation Groups.- 4. Automorphisms of Compact Elliptic Structures.- 5. Prolongations of G-Structures.- 6. Volume Elements and Symplectic Structures.- 7. Contact Structures.- 8. Pseudogroup Structures, G-Structures and Filtered Lie Algebras.- II. Isometries of Riemannian Manifolds.- 1. The Group of Isometries of a Riemannian Manifold.- 2. Infinitesimal Isometries and Infinitesimal Affine Transformations.- 3. Riemannian Manifolds with Large Group of Isometries.- 4. Riemannian Manifolds with Little Isometries.- 5. Fixed Points of Isometries.- 6. Infinitesimal Isometries and Characteristic Numbers.- III. Automorphisms of Complex Manifolds.- 1. The Group of Automorphisms of a Complex Manifold.- 2. Compact Complex Manifolds with Finite Automorphism Groups.- 3. Holomorphic Vector Fields and Holomorphic 1-Forms.- 4. Holomorphic Vector Fields on Kahler Manifolds.- 5. Compact Einstein-Kähler Manifolds.- 6. Compact Kähler Manifolds with Constant Scalar Curvature.- 7. Conformal Changes of the Laplacian.- 8. Compact Kähler Manifolds with Nonpositive First Chern Class.- 9. Projectively Induced Holomorphic Transformations.- 10. Zeros of Infinitesimal Isometries.- 11. Zeros of Holomorphic Vector Fields.- 12. Holomorphic Vector Fields and Characteristic Numbers.- IV. Affine, Conformal and Projective Transformations.- 1. The Group of Affine Transformations of an Affinely Connected Manifold.- 2. Affine Transformations of Riemannian Manifolds.- 3. Cartan Connections.- 4. Projective and Conformal Connections.- 5. Frames of Second Order.- 6. Projective and Conformal Structures.- 7. Projective and Conformal Equivalences.- Appendices.- 1. Reductions of 1-Forms andClosed 2-Forms.- 2. Some Integral Formulas.- 3. Laplacians in Local Coordinates.
Erscheint lt. Verlag | 15.2.1995 |
---|---|
Reihe/Serie | Classics in Mathematics |
Zusatzinfo | VIII, 182 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 233 mm |
Gewicht | 318 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | automorphism • Differentialgeometrie • Differential Geometry • Differenzialgeometrie • Lie group • transformation group • Transformation (Math.) • Transformation (Mathematik) |
ISBN-10 | 3-540-58659-8 / 3540586598 |
ISBN-13 | 978-3-540-58659-3 / 9783540586593 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich