High Performance Discovery In Time Series
Techniques and Case Studies
Seiten
2011
|
Softcover reprint of the original 1st ed. 2004
Springer-Verlag New York Inc.
978-1-4419-1842-0 (ISBN)
Springer-Verlag New York Inc.
978-1-4419-1842-0 (ISBN)
Overview and Goals Data arriving in time order (a data stream) arises in fields ranging from physics to finance to medicine to music, just to name a few. Often the data comes from sensors (in physics and medicine for example) whose data rates continue to improve dramati cally as sensor technology improves. Further, the number of sensors is increasing, so correlating data between sensors becomes ever more critical in orderto distill knowl edge from the data. On-line response is desirable in many applications (e.g., to aim a telescope at a burst of activity in a galaxy or to perform magnetic resonance-based real-time surgery). These factors - data size, bursts, correlation, and fast response motivate this book. Our goal is to help you design fast, scalable algorithms for the analysis of single or multiple time series. Not only will you find useful techniques and systems built from simple primi tives, but creative readers will find many other applications of these primitives and may see how to create new ones of their own. Our goal, then, is to help research mathematicians and computer scientists find new algorithms and to help working scientists and financial mathematicians design better, faster software.
1 Time Series Preliminaries.- 2 Data Reduction and Transformation Techniques.- 3 Indexing Methods.- 4 Flexible Similarity Search.- 5 StatStream.- 6 Query by Humming.- 7 Elastic Burst Detection.- 8 A Call to Exploration.- A Answers to the Questions.- A.2 Chapter 2.- A.3 Chapter 3.- A.4 Chapter 4.- A.5 Chapter 5.- A.6 Chapter 6.- A.7 Chapter 7.- References.
Reihe/Serie | Monographs in Computer Science |
---|---|
Zusatzinfo | 45 Illustrations, black and white; XV, 190 p. 45 illus. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Algorithmen | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 1-4419-1842-6 / 1441918426 |
ISBN-13 | 978-1-4419-1842-0 / 9781441918420 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Datenanalyse für Künstliche Intelligenz
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython
Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85