General Topology III
Paracompactness, Function Spaces, Descriptive Theory
Seiten
2010
|
Softcover reprint of hardcover 1st ed. 1995
Springer Berlin (Verlag)
978-3-642-08123-1 (ISBN)
Springer Berlin (Verlag)
978-3-642-08123-1 (ISBN)
The problem of metrization of topological spaces has had an enormous influence on the development of general topology. Singling out the basic topo logical components of metrizability has determined the main reference points in the construction of the classification of topological spaces. These are (pri marily) paracompactness, collectionwise normality, monotonic normality and perfect normality, the concepts of a stratifiable space, Moore space and u space, point-countable base, and uniform base. The method of covers has taken up a leading role in this classification. Of paramount significance in the applications of this method have been the properties of covers relating to the character of their elements (open covers, closed covers), the mutual dispo sition of these elements (star finite, point finite, locally finite covers, etc. ), as well as the relations of refinement between covers (simple refinement, refine ment with closure, combinatorial refinement, star and strong star refinement). On this basis a hierarchy of properties of paracompactness type has been sin gled out, together with the classes of spaces corresponding to them, the most important of which is the class of paracompacta. The behaviour of families of covers with respect to the topology of a space has important significance. Here, first and foremost, is the notion of a refining family of covers, a development which appears in several modifications and, together with the notion of paracompactness, plays a key role in metrization problems.
I. Paracompactness and Metrization. The Method of Covers in the Classification of Spaces.- II. Spaces of Mappings and Rings of Continuous Functions.- III. Descriptive Set Theory and Topology.- Author Index.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Reihe/Serie | Encyclopaedia of Mathematical Sciences |
Zusatzinfo | VIII, 232 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 373 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Schlagworte | Analysis • Compactness • Functional Analysis • function space • Funktionenraum • Gleichmäßige Konvergenz • Kompaktheit • Mengenoperationen • Metrisierbarkeit • metrizability • operations on sets • Probability Theory • SET • set theory • uniform convergence |
ISBN-10 | 3-642-08123-1 / 3642081231 |
ISBN-13 | 978-3-642-08123-1 / 9783642081231 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Gekrümmte Kurven und Flächen
Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 76,90
how geometry rules the universe
Buch | Hardcover (2024)
Basic Books (Verlag)
CHF 43,60