Sheaves on Manifolds
Springer Berlin (Verlag)
978-3-642-08082-1 (ISBN)
Sheaf Theory is a highly "modern" and active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. In this Grundlehren volume the authors achieve a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view.
A Short History: Les débuts de la théorie des faisceaux.- I. Homological algebra.- II. Sheaves.- III. Poincaré-Verdier duality and Fourier-Sato transformation.- IV. Specialization and microlocalization.- V. Micro-support of sheaves.- VI. Micro-support and microlocalization.- VII. Contact transformations and pure sheaves.- VIII. Constructible sheaves.- IX. Characteristic cycles.- X. Perverse sheaves.- XI. Applications to O-modules and D-modules.- Appendix: Symplectic geometry.- Summary.- A.1. Symplectic vector spaces.- A.2. Homogeneous symplectic manifolds.- A.3. Inertia index.- Exercises to the Appendix.- Notes.- List of notations and conventions.
Erscheint lt. Verlag | 1.12.2010 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | X, 512 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 276 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | algebraic topology • Analysis • differential equation • D-modules • Homological algebra • microlocal analysis • partial differential equation • Sheaves |
ISBN-10 | 3-642-08082-0 / 3642080820 |
ISBN-13 | 978-3-642-08082-1 / 9783642080821 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich