Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Notes on Coxeter Transformations and the McKay Correspondence - Rafael Stekolshchik

Notes on Coxeter Transformations and the McKay Correspondence

Buch | Softcover
XX, 240 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 2008
Springer Berlin (Verlag)
978-3-642-09604-4 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram.

The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincaré series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers.

On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.

1980 - 1991, CAM (Center of Automation and Metrology), Academy of Sciences of Moldova, Project leader of experimental data processing. Research and development of programs and mathematical tools for Academy of Sciences of Moldova, 999 - 2007, ECI Telecom (Electronics Corporation of Israel), Israel, Project leader in the Network Management department. Research and development of algorithmes in the field of Communications and Big Systems.

Preliminaries.- The Jordan normal form of the Coxeter transformation.- Eigenvalues, splitting formulas and diagrams Tp,q,r.- R. Steinberg's theorem, B. Kostant's construction.- The affine Coxeter transformation.

Erscheint lt. Verlag 30.11.2010
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo XX, 240 p. 28 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 398 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Schlagworte Cartan matrix • Coxeter transformation • Dynkin diagram • eigenvalue • Matrix • McKay correspondence • Poincare series • Representation Theory
ISBN-10 3-642-09604-2 / 3642096042
ISBN-13 978-3-642-09604-4 / 9783642096044
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich