Notes on Coxeter Transformations and the McKay Correspondence (eBook)
XX, 240 Seiten
Springer Berlin (Verlag)
978-3-540-77399-3 (ISBN)
Here is a key text on the subject of representation theory in finite groups. The pages of this excellent little book, prepared by Rafael Stekolshchik, contain a number of new proofs relating to Coxeter Transformations and the McKay Correspondence. They include ideas and formulae from a number of luminaries including J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, as well as material from Coxeter and McKay themselves. Many other authors have material published here too.
1980 - 1991, CAM (Center of Automation and Metrology), Academy of Sciences of Moldova, Project leader of experimental data processing.
Research and development of programs and mathematical tools for Academy of Sciences of Moldova,
999 - 2007, ECI Telecom (Electronics Corporation of Israel), Israel, Project leader in the Network Management department.
Research and development of algorithmes in the field of Communications and Big Systems.
1980 - 1991, CAM (Center of Automation and Metrology), Academy of Sciences of Moldova, Project leader of experimental data processing. Research and development of programs and mathematical tools for Academy of Sciences of Moldova, 999 – 2007, ECI Telecom (Electronics Corporation of Israel), Israel, Project leader in the Network Management department.Research and development of algorithmes in the field of Communications and Big Systems.
Summary 5
Contents 9
List of Figures 15
List of Tables 17
List of Notions 19
1 Introduction 21
1.1 The three historical aspects of the Coxeter transformation 21
1.2 A brief review of this work 23
1.3 The spectrum and the Jordan form 26
1.4 Splitting formulas and the diagrams 29
1.5 Coxeter transformations and the McKay correspondence 33
1.6 The a.ne Coxeter transformation 36
1.7 The regular representations of quivers 39
2 Preliminaries 43
2.1 The Cartan matrix and the Tits form 43
2.2 Representations of quivers 58
2.3 The Poincare series 66
3 The Jordan normal form of the Coxeter transformation 71
3.1 The Cartan matrix and the Coxeter transformation 71
3.2 An application of the Perron-Frobenius theorem 76
3.3 The basis of eigenvectors and a theorem on the Jordan form 81
4 Eigenvalues, splitting formulas and diagrams 87
4.1 The eigenvalues of the a.ne Coxeter transformation are roots of unity 87
4.2 Bibliographical notes on the spectrum of the Coxeter transformation 91
4.3 Splitting and gluing formulas for the characteristic polynomial 94
4.4 Formulas of the characteristic polynomials for the diagrams Tp,q,r 100
5 R. Steinberg’s theorem, B. Kostant’s construction 115
5.1 R. Steinberg’s theorem and a (p, q, r) mystery 115
5.2 The characteristic polynomials for the Dynkin diagrams 119
5.3 A generalization of R. Steinberg’s theorem 122
5.4 The Kostant generating function and Poincare series 125
5.5 The orbit structure of the Coxeter transformation 136
6 The affine Coxeter transformation 149
6.1 The Weyl Group and the affine Weyl group 149
6.2 R. Steinberg’s theorem again 157
6.3 The defect 168
A The McKay correspondence and the Slodowy correspondence 175
A.1 Finite subgroups of SU(2) and SO(3, R) 175
A.2 The generators and relations in polyhedral groups 176
A.3 The Kleinian singularities and the Du Val resolution 178
A.4 The McKay correspondence 180
A.5 The Slodowy generalization of the McKay correspondence 181
A.6 The characters of the binary polyhedral groups 199
B Regularity conditions for representations of quivers 203
B.1 The Coxeter functors and regularity conditions 203
B.2 The necessary regularity conditions for diagrams with indefinite Tits form 208
B.3 Transforming elements and suficient regularity conditions 211
B.4 Examples of regularity conditions 217
C Miscellanea 223
C.1 The triangle groups and Hurwitz groups 223
C.2 The algebraic integers 224
C.3 The Perron-Frobenius Theorem 226
C.4 The Schwartz inequality 227
C.5 The complex projective line and stereographic projection 228
C.6 The prime spectrum, the coordinate ring, the orbit space 230
C.7 Fixed and anti-fixed points of the Coxeter transformation 235
References 241
Index 253
Erscheint lt. Verlag | 18.1.2008 |
---|---|
Reihe/Serie | Springer Monographs in Mathematics | Springer Monographs in Mathematics |
Zusatzinfo | XX, 240 p. 28 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | Cartan matrix • Coxeter transformation • Dynkin diagram • eigenvalue • Matrix • McKay correspondence • Poincare series • Representation Theory |
ISBN-10 | 3-540-77399-1 / 3540773991 |
ISBN-13 | 978-3-540-77399-3 / 9783540773993 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich