Stochastic Differential Equations in Infinite Dimensions
Springer Berlin (Verlag)
978-3-642-16193-3 (ISBN)
Preface.- Part I: Stochastic Differential Equations in Infinite Dimensions.- 1.Partial Differential Equations as Equations in Infinite.- 2.Stochastic Calculus.- 3.Stochastic Differential Equations.- 4.Solutions by Variational Method.- 5.Stochastic Differential Equations with Discontinuous Drift.- Part II: Stability, Boundedness, and Invariant Measures.- 6.Stability Theory for Strong and Mild Solutions.- 7.Ultimate Boundedness and Invariant Measure.- References.- Index.
From the reviews:
"The text is complete, accurate and a very clear introduction to the topic. ... the book is a very nice and clear introduction to major methods in the study of infinite-dimensional stochastic differential equations. The book is not only appropriate for teaching purposes (it is designed for graduate students but due to its clear approach it can probably be used in undergraduate classes as well), but also a robust reference work for pure and applied mathematicians." (Giorgio Fabbri, Mathematical Reviews, Issue 2012 a)
Erscheint lt. Verlag | 15.12.2010 |
---|---|
Reihe/Serie | Probability and Its Applications |
Zusatzinfo | XVI, 291 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 595 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Schlagworte | 35-XX, 60-XX • infinite dimensions • Infinitesimalrechnung • Partial differential equations • Quantitative Finance • Stochastic differential equations • Stochastische Differenzialgleichungen |
ISBN-10 | 3-642-16193-6 / 3642161936 |
ISBN-13 | 978-3-642-16193-3 / 9783642161933 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich