Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Arithmetic Geometry

Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007
Buch | Softcover
XI, 232 Seiten
2010 | 2010
Springer Berlin (Verlag)
978-3-642-15944-2 (ISBN)
CHF 74,85 inkl. MwSt
Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thelene, Peter Swinnerton Dyer and Paul Vojta.

Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences.- Topics in Diophantine Equations.- Diophantine Approximation and Nevanlinna Theory.

Erscheint lt. Verlag 4.11.2010
Reihe/Serie C.I.M.E. Foundation Subseries
Lecture Notes in Mathematics
Zusatzinfo XI, 232 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 790 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte 11G35,11G25,11D45,14G05,14G10,14G40,14M22 • Algebra • Algebraic Varieties • Arithmetic Geometry • Diophantine approximation • diophantine equations • Nevanlinna theory • Number Theory • Rationally connected varieties
ISBN-10 3-642-15944-3 / 3642159443
ISBN-13 978-3-642-15944-2 / 9783642159442
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich