Preference Learning
Springer Berlin (Verlag)
978-3-642-14124-9 (ISBN)
Prof. Dr. Johannes Fürnkranz is a professor of knowledge engineering at the Technische Universität Darmstadt. He has chaired and served on the boards of the main journals and conferences in this field. His research interests include inductive rule learning, preference learning, game playing, web mining, and data mining in social science.
Preference Learning: An Introduction.- A Preference Optimization Based Unifying Framework for Supervised Learning Problems.- Label Ranking Algorithms: A Survey.- Preference Learning and Ranking by Pairwise Comparison.- Decision Tree Modeling for Ranking Data.- Co-regularized Least-Squares for Label Ranking.- A Survey on ROC-Based Ordinal Regression.- Ranking Cases with Classification Rules.- A Survey and Empirical Comparison of Object Ranking Methods.- Dimension Reduction for Object Ranking.- Learning of Rule Ensembles for Multiple Attribute Ranking Problems.- Learning Lexicographic Preference Models.- Learning Ordinal Preferences on Multiattribute Domains: the Case of CP-nets.- Choice-Based Conjoint Analysis: Classification vs. Discrete Choice Models.- Learning Aggregation Operators for Preference Modeling.- Evaluating Search Engine Relevance with Click-Based Metrics.- Learning SVM Ranking Function from User Feedback Using Document.- Metadata and Active Learning in the Biomedical Domain.- Learning Preference Models in Recommender Systems.- Collaborative Preference Learning.- Discerning Relevant Model Features in a Content-Based Collaborative Recommender System.- Author Index.- Subject Index
From the reviews:
"The book looks at three major types of preference learning: label ranking, instance ranking, and object ranking. ... chapters contain case studies and actual experiments to illustrate the claims made within. ... this is a useful book in an emerging and important area, and hence would be of interest to machine learning researchers. The book is quite readable to that audience, despite a heavy emphasis on formal treatment." (M. Sasikumar, ACM Computing Reviews, September, 2011)
Erscheint lt. Verlag | 10.10.2010 |
---|---|
Zusatzinfo | IX, 466 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 905 g |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Artificial Intelligence • Data Mining • Information Retrieval • Instance ranking • Künstliche Intelligenz • Label ranking • learning • machine learning • Maschinelles Lernen • Multicriteria decision-making • object ranking • Operations Research • preference learning • Preference prediction • Reasoning • Recommender Systems • Supevised learning |
ISBN-10 | 3-642-14124-2 / 3642141242 |
ISBN-13 | 978-3-642-14124-9 / 9783642141249 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich