Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Domain Driven Data Mining

Buch | Hardcover
248 Seiten
2010
Springer-Verlag New York Inc.
978-1-4419-5736-8 (ISBN)

Lese- und Medienproben

Domain Driven Data Mining - Longbing Cao, Philip S. Yu, Chengqi Zhang, Yanchang Zhao
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book offers state-of the-art research and development outcomes on methodologies, techniques, approaches and successful applications in domain driven, actionable knowledge discovery. It bridges the gap between business expectations and research output.
Data mining has emerged as one of the most active areas in information and c- munication technologies(ICT). With the boomingof the global economy,and ub- uitouscomputingandnetworkingacrosseverysectorand business,data andits deep analysis becomes a particularly important issue for enhancing the soft power of an organization, its production systems, decision-making and performance. The last ten years have seen ever-increasingapplications of data mining in business, gove- ment, social networks and the like. However, a crucial problem that prevents data mining from playing a strategic decision-support role in ICT is its usually limited decision-support power in the real world. Typical concerns include its actionability, workability, transferability, and the trustworthy, dependable, repeatable, operable and explainable capabilities of data mining algorithms, tools and outputs. This monograph, Domain Driven Data Mining, is motivated by the real-world challenges to and complexities of the current KDD methodologies and techniques, which are critical issues faced by data mining, as well as the ?ndings, thoughts and lessons learned in conducting several large-scale real-world data mining bu- ness applications.
The aim and objective of domain driven data mining is to study effective and ef?cient methodologies, techniques, tools, and applications that can discover and deliver actionable knowledge that can be passed on to business people for direct decision-making and action-taking.

Challenges and Trends.- Methodology.- Ubiquitous Intelligence.- Knowledge Actionability.- AKD Frameworks.- Combined Mining.- Agent-Driven Data Mining.- Post Mining.- Mining Actionable Knowledge on Capital Market Data.- Mining Actionable Knowledge on Social Security Data.- Open Issues and Prospects.- Reading Materials.

Zusatzinfo XVI, 248 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 1-4419-5736-7 / 1441957367
ISBN-13 978-1-4419-5736-8 / 9781441957368
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90