Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Automating the Design of Data Mining Algorithms

An Evolutionary Computation Approach
Buch | Hardcover
XIII, 187 Seiten
2009 | 2010
Springer Berlin (Verlag)
978-3-642-02540-2 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Data Mining.- Evolutionary Algorithms.- Genetic Programming for Classification and Algorithm Design.- Automating the Design of Rule Induction Algorithms.- Computational Results on the Automatic Design of Full Rule Induction Algorithms.- Directions for Future Research on the Automatic Design of Data Mining Algorithms.

From the reviews:

"The book is targeted at researchers and postgraduate students. As the amount of data being mined continues to grow it demands ever more sophisticated mining algorithms. Therefore there is a need for new algorithms and so Pappa and Freitas' book will be of interest particularly to researchers in data mining. ... [T]his book will appeal to the target audience of [the journal] Genetic Programming and Evolvable Machines and, I feel, will align with the research interests of its readership." (John Woodward, Genetic Programming and Evolvable Machines (2011) 12:81-83)

"The book will be useful for postgraduate students and researchers in the data mining field and in evolutionary computation." (Florin Gorunescu, Zentralblatt MATH, Vol. 1183, 2010)

Erscheint lt. Verlag 10.11.2009
Reihe/Serie Natural Computing Series
Zusatzinfo XIII, 187 p. 33 illus.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 480 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Algorithmen • algorithms • classification • Data Mining • data structures • Evolutionäre Algorithmen • evolutionary algorithms • Evolutionary Computing • genetic programming • Genetische Programmierung • machine learning • Maschinelles Lernen • Rule Induction • tar
ISBN-10 3-642-02540-4 / 3642025404
ISBN-13 978-3-642-02540-2 / 9783642025402
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85