Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A Simple Method for Predicting Covariance Matrices of Financial Returns - Kasper Johansson, Mehmet G. Ogut, Markus Pelger, Thomas Schmelzer, Stephen Boyd

A Simple Method for Predicting Covariance Matrices of Financial Returns

Buch | Softcover
98 Seiten
2023
now publishers Inc (Verlag)
978-1-63828-308-9 (ISBN)
CHF 104,75 inkl. MwSt
  • Lieferzeit auf Anfrage
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Makes three contributions: proposes a new method for predicting the time-varying covariance matrix of a vector of financial returns; proposes a new method for evaluating a covariance predictor, by considering the regret of the log-likelihood over some time period such as a quarter; an extensive empirical study of covariance predictors.
A Simple Method for Predicting Covariance Matrices of Financial Returns makes three contributions. First, it proposes a new method for predicting the time-varying covariance matrix of a vector of financial returns, building on a specific covariance estimator suggested by Engle in 2002. The second contribution proposes a new method for evaluating a covariance predictor, by considering the regret of the log-likelihood over some time period such as a quarter. The third contribution is an extensive empirical study of covariance predictors. The authors compare their method to other popular predictors, including rolling window, exponentially weighted moving average (EWMA) and generalized autoregressive conditional heteroscedastic (GARCH) type methods. After an introduction, Section 2 describes some common predictors, including the one that this method builds on. Section 3 introduces the proposed covariance predictor. Section 4 discusses methods for validating covariance predictors that measure both overall performance and reactivity to market changes. Section 5 describes the data used in the authors’ first empirical studies and the results are provided in Section 6. The authors then discuss some extensions of and variations on the method, including realized covariance prediction (Section 7), handling large universes via factor models (Section 8), obtaining smooth covariance estimates (Section 9), and using the authors’ covariance model to generate simulated returns (Section 10).

1. Introduction
2. Some Common Covariance Predictors
3. Combined Multiple Iterated EWMAs
4. Evaluating Covariance Predictors
5. Data Sets and Experimental Setup
6. Results
7. Realized Covariance
8. Large Universes
9. Smooth Covariance Predictions
10. Simulating Returns
11. Conclusions
Acknowledgements
References

Erscheinungsdatum
Reihe/Serie Foundations and Trends® in Econometrics
Verlagsort Hanover
Sprache englisch
Maße 156 x 234 mm
Gewicht 151 g
Themenwelt Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-63828-308-7 / 1638283087
ISBN-13 978-1-63828-308-9 / 9781638283089
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Übungsaufgaben – Fallstudien – Lösungen

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 34,90
Set aus Lehr- und Arbeitsbuch

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 49,95