Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data science management

vom ersten Konzept bis zur Governance datengetriebener Organisationen
Buch | Softcover
308 Seiten
2024 | 1. Auflage
O'Reilly (Verlag)
978-3-96009-214-8 (ISBN)
CHF 48,85 inkl. MwSt
  • Themenspektrum: Designen von Projekten, Datenverarbeitung, Analysemethoden, Rolle und Aufgaben von Data Science Manager:innen, Kommunikation mit Stakeholdern, Automatisierung, MLOps, Governance
  • Inklusive konkreter Toolsets wie z.B. Softwarepakete, Checklisten, Projekt-Canvases sowie Übersichten über bewährte Methoden
  • Die Autoren sind Professoren für Data Science bzw. Data Science Management an der Digital Business University of Applied Sciences und Startup-Gründer

Der umfassende Leitfaden für das Managen von Data-Science-Projekten für Studium und Beruf

Viele Data-Science-Vorhaben scheitern an organisatorischen Hürden: Oftmals ist die Rolle des Managements in diesen Projekten nicht klar definiert, zudem gibt es unterschiedliche Vorstellungen, wie gutes Projektmanagement für Data-Science-Produkte aussehen muss.

Dieser praxisorientierte Leitfaden unterstützt Sie beim erfolgreichen Management von Data-Science-Projekten jeder Größe. Sie erfahren zunächst, wie Datenanalysen durchgeführt werden und welche Tools hierfür infrage kommen.

Marcel Hebing und Martin Manhembué zeigen dann Wege auf, wie Sie Projekte entlang des Data-Science-Lifecycles planen und eine datengetriebene Organisationskultur implementieren. Dabei wird die Rolle von Data-Science-Managerinnen und -Managern im Kontext eines modernen Leaderships beleuchtet und der Aufbau von Datenanalyse-Teams beschrieben.

Jeder Themenbereich wird ergänzt durch Hands-on-Kapitel, die Toolsets und Checklisten für die Umsetzung in die Praxis enthalten.

Themen des Buchs:
  • Data-Science-Grundlagen: Designen von Projekten, Datenformate und Datenbanken, Datenaufbereitung, Analysemethoden aus Statistik und Machine Learning
  • Management von Data-Science-Projekten: Grundlagen des Projektmanagements, typische Fallstricke, Rolle und Aufgaben des Managements, Data-Science-Teams, Servant und Agile Leadership, Kommunikation mit Stakeholdern
  • Infrastruktur und Architektur: Automatisierung, IT-Infrastruktur, Data-Science-Architekturen, DevOps und MLOps
  • Governance und Data-driven Culture: Digitale Transformation, Implementierung von Data Science im Unternehmen, Sicherheit und Datenschutz, New Work, Recruiting

Zielgruppe:
  • Manager*innen und Product Owner in Data Science und Analytics
  • Studierende der Data Science, Statistik und Wirtschaftsinformatik

Marcel Hebing ist Professor für Data Science an der Digital Business University of Applied Sciences (DBU), Gründer der Impact Distillery (mStats DS GmbH) und Assoziierter Forscher am Alexander von Humboldt Institut für Internet und Gesellschaft (HIIG). Sein fachlicher Hintergrund in der Informatik, Soziologie und Statistik gibt ihm eine besondere Perspektive auf Fragen der Datenqualität in der Statistik, der Interpretation von Daten und der Anwendung von Machine-Learning-Methoden.

Martin Manhembué ist Professor für Data Science Management an der Digital Business University of Applied Sciences (DBU) und Gründer. In den letzten Jahren arbeitete er in der Beratung und im agilen Management eines Konzerns. Martins Interesse gilt der Organisation und dem Management von Data Science in Unternehmen und den Menschen, die daran beteiligt sind. Er wurde mit einer Arbeit zur Modellierung von stofflichen und energetischen Gradienten an Ökosystemgrenzen an der Universität Potsdam promoviert.

Erscheinungsdatum
Reihe/Serie Animals
Zusatzinfo Illustrationen
Verlagsort Heidelberg
Sprache deutsch
Maße 165 x 240 mm
Einbandart kartoniert
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte Agile • Agiles Projektmanagement • AIOps • Analytics Continuum • DataOps • Data Science • Data Science Architekturen • Data Science Lebenszyklus • Data Science Lifecycle • Datenanalyse • Datenmanagement • DevOps • Governance. Proof of Concept • machine learning • MLOps • Statistik
ISBN-10 3-96009-214-8 / 3960092148
ISBN-13 978-3-96009-214-8 / 9783960092148
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich