PyTorch Pocket Reference
Building and Deploying Deep Learning Models
Seiten
2021
O'Reilly Media (Verlag)
978-1-4920-9000-7 (ISBN)
O'Reilly Media (Verlag)
978-1-4920-9000-7 (ISBN)
This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers.
Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network developmentafrom loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices.
Learn basic PyTorch syntax and design patterns
Create custom models and data transforms
Train and deploy models using a GPU and TPU
Train and test a deep learning classifier
Accelerate training using optimization and distributed training
Access useful PyTorch libraries and the PyTorch ecosystem
Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network developmentafrom loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices.
Learn basic PyTorch syntax and design patterns
Create custom models and data transforms
Train and deploy models using a GPU and TPU
Train and test a deep learning classifier
Accelerate training using optimization and distributed training
Access useful PyTorch libraries and the PyTorch ecosystem
Joe Papa has over 25 years experience in research & development and is the founder of INSPIRD.ai. He holds an MSEE and has led AI Research teams with PyTorch at Booz Allen and Perspecta Labs. Joe has mentored hundreds of Data Scientists and has taught 6,000+ students across the world on Udemy.
Erscheinungsdatum | 25.05.2021 |
---|---|
Verlagsort | Sebastopol |
Sprache | englisch |
Maße | 108 x 178 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Wirtschaft ► Betriebswirtschaft / Management | |
ISBN-10 | 1-4920-9000-X / 149209000X |
ISBN-13 | 978-1-4920-9000-7 / 9781492090007 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15
Eine Einführung mit Java
Buch | Hardcover (2020)
dpunkt (Verlag)
CHF 62,85