The Demand for Life Insurance (eBook)
XII, 163 Seiten
Springer International Publishing (Verlag)
978-3-030-36903-3 (ISBN)
This book, adopting machine learning techniques for the financial planning field, explores the demand for life insurance as seen in previous literature and both estimates and predicts the demand for the adoption of life insurance using these techniques. Previous studies used diverse perspectives, like actuarial and life span, in order to understand the demand for life insurance, though these approaches have shown inconsistent findings. Employing two theoretical backgrounds-ecological systemic theory and artificial intellectual methodology-this book explores a better estimation and a prediction of the demand for life insurance and will be of interest to academics and students of insurance, financial planning, and risk management.
Wookjae Heo is an assistant professor of Consumer Affairs at the South Dakota State University, USA. Prior to earning a PhD from the University of Georgia, USA, he had worked for a marketing consulting firm and received a MA Degree in Consumer Sciences from Seoul National University, South Korea. His main research interest is broadly about consumer behavioral intervention, financial stress on consumer behavior, demand of life insurance, and data mining/data analysis in consumer research.
Preface 5
Contents 7
List of Figures 9
List of Tables 10
Chapter 1 Introduction: A Need of New Framework in Financial Planning with the Case of Life Insurance Demand 12
Abstract 12
1.1 Introduction and Statement of the Problem 12
1.2 Purpose and Justification of Study 19
1.2.1 Complexity Among the Determinants of the Demand for Life Insurance 20
1.2.2 Adoption of a Dynamic Nonlinear Systemic Approach 22
1.3 Research Questions and Hypotheses 23
1.4 Specific Research Objectives 24
References 25
Chapter 2 Theoretical Background: A New Theoretical Framework for Financial Planning with the Case of Life Insurance Demand—Dynamic Ecological Systemic Framework 29
Abstract 29
2.1 Introduction to Conceptual and Theoretical Framework 30
2.1.1 Ecological Framework 30
2.1.2 Transformative Consumer Research 33
2.1.3 Nonlinear Science in Economic Areas 35
2.1.3.1 Complexity in the Actual World and Nonlinear Science with Chaotic Dynamics 36
2.1.3.2 Adopting Nonlinear Science in Economics 37
2.1.3.3 Examples of Adopting Nonlinear Science in Economic-Related Areas 39
2.1.3.4 Summary 41
2.1.4 Concept of Dynamic Nonlinear Systemic Framework Concepts 42
2.1.5 Conceptual Artificial Neural Network Model Using the Dynamic Nonlinear Systemic Framework 44
2.1.5.1 Artificial Neural Networks: A Primer 45
2.2 Definitions 48
2.2.1 Life Insurance 48
2.2.2 Dynamic Nonlinearity 49
2.2.3 System 49
2.3 Assumptions and Limitations 50
2.4 Summary 51
References 52
Chapter 3 Literature Review: Previous Literature for Understanding Life Insurance and Behavioral Demand for Life Insurance 57
Abstract 57
3.1 Historical Context Discussion 58
3.1.1 Understanding Risk, Risk Management, and the Need for Insurance 58
3.1.2 Personal Need for Life Insurance 62
3.1.3 Understanding Life Insurance 63
3.1.4 Understanding Life Insurance Demand: The Actuarial Perspective 65
3.1.5 Understanding Life Insurance Demand: The Lifespan-Related Economics Perspective 67
3.1.6 Understanding Life Insurance Demand: The Behavioral Economics Perspective 70
3.1.7 Summary 72
References 72
Chapter 4 Practical Approach: Practical Approach to Personal Needs of Life Insurance with Dynamic Systemic Framework 75
Abstract 75
4.1 Review of Studies and Scholarly Works Related to the Research Proposed for the Analysis 75
4.1.1 Factors Inside the Household-Level System 76
4.1.2 Factors from the Microenvironmental System 80
4.1.3 Factors from the Macroenvironmental System 81
4.2 Summary and Analysis of the Literature as Applied to the Research Problem 82
References 84
Chapter 5 Empirical Analysis Part 1 Methodology and Data: Empirical Example of Predicting the Demand for Life Insurance by Using the Dynamic Systemic Framework 86
Abstract 86
5.1 Brief Overview 86
5.2 Design of the Study and Methods 88
5.2.1 Description of Data 88
5.2.2 Dependent Variables from the Data 90
5.2.3 Independent Variables from the Data 90
5.2.3.1 Individual Characteristics Individual Characteristics in the Household-Level System 90
5.2.3.2 Family Characteristics in the Household-Level System 95
5.2.3.3 Variables in the Microenvironmental System 99
5.2.3.4 Variables in the Macroenvironmental System 102
5.2.4 Data Analysis Procedure 105
5.2.4.1 Clustering the Sub-Sample for Better Discovery of a Variable List 105
5.2.4.2 Prediction Rate Comparison 105
5.2.4.3 Statistics Programs for Analyses 107
5.3 Summary 107
References 108
Chapter 6 Empirical Analysis Part 2 Result and Findings: Empirical Example of Predicting the Demand for Life Insurance by Using the Dynamic Systemic Framework 109
Abstract 109
6.1 Analysis Procedure 109
6.2 Observations 111
6.3 Sub-sampling by Cluster Analysis 115
6.4 Split of Data 117
6.5 Influential Variables Found by Logistic Estimations Among the Three Clusters 118
6.6 Probability Prediction Using Logistic Estimations Among the Three Clusters 131
6.7 Influential Variables Found Using ANN Estimations Among the Three Clusters 133
6.8 Probability Prediction by Using ANN Estimations Among the Three Clusters 143
6.9 Influential Variables Comparison Between the Logistic and ANN 145
6.10 Prediction Rate Comparison Between the Logistic and ANN Methods 150
6.11 Summary 151
References 152
Chapter 7 Implications and Conclusion: Implications and Conclusion from the Empirical Example of Predicting the Demand for Life Insurance by Using the Dynamic Systemic Framework 153
Abstract 153
7.1 Theoretical Implications 153
7.2 Research Literature Implications 157
7.3 Methodological Implications 158
7.4 Implications for Practitioners and Policy Makers 159
7.5 Conclusion, Limitation, and Further Direction 165
References 168
Index 169
Erscheint lt. Verlag | 27.12.2019 |
---|---|
Zusatzinfo | XII, 163 p. 10 illus., 2 illus. in color. |
Sprache | englisch |
Themenwelt | Wirtschaft |
Schlagworte | Ecological Systemic Theory • Financial Planning • Household finance • insurance • insurance planning • life insurance • machine learning • Prediction with Dynamic Approach |
ISBN-10 | 3-030-36903-X / 303036903X |
ISBN-13 | 978-3-030-36903-3 / 9783030369033 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich