Macroeconomic Forecasting in the Era of Big Data
Springer International Publishing (Verlag)
978-3-030-31149-0 (ISBN)
Peter Fuleky is an Associate Professor of Economics with a joint appointment at the University of Hawaii Economic Research Organization (UHERO), and the Department of Economics at the University of Hawaii at Manoa. His research focuses on econometrics, time series analysis, and forecasting. He is a co-author of UHERO's quarterly forecast reports on Hawaii's economy. He obtained his Ph.D. degree in Economics at the University of Washington, USA.
Introduction: Sources and Types of Big Data for Macroeconomic Forecasting.- Capturing Dynamic Relationships: Dynamic Factor Models.- Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs.- Large Bayesian Vector Autoregressions.- Volatility Forecasting in a Data Rich Environment.- Neural Networks.- Seeking Parsimony: Penalized Time Series Regression.- Principal Component and Static Factor Analysis.- Subspace Methods.- Variable Selection and Feature Screening.- Dealing with Model Uncertainty: Frequentist Averaging.- Bayesian Model Averaging.- Bootstrap Aggregating and Random Forest.- Boosting.- Density Forecasting.- Forecast Evaluation.- Further Issues: Unit Roots and Cointegration.- Turning Points and Classification.- Robust Methods for High-dimensional Regression and Covariance Matrix Estimation.- Frequency Domain.- Hierarchical Forecasting.
Erscheinungsdatum | 19.12.2019 |
---|---|
Reihe/Serie | Advanced Studies in Theoretical and Applied Econometrics |
Zusatzinfo | XIII, 719 p. 80 illus., 62 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1262 g |
Themenwelt | Wirtschaft ► Allgemeines / Lexika |
Wirtschaft ► Volkswirtschaftslehre ► Ökonometrie | |
Schlagworte | Aggregation • Averaging • Big Data • Cointegration • dimension reduction • dynamic factor models • Estimation of common factors • Feature screening • Forecasts • Macroeconomic Forecasting • Mixed frequency data sampling regressions • Model forecast combination • Penalized regression • Shrinkage • Subspace Methods • Time varying parameters • Unit Roots • Variable selection • Vector autoregressions |
ISBN-10 | 3-030-31149-X / 303031149X |
ISBN-13 | 978-3-030-31149-0 / 9783030311490 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich