Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Fuzzy Collaborative Forecasting and Clustering (eBook)

Methodology, System Architecture, and Applications
eBook Download: PDF
2019 | 1st ed. 2020
IX, 89 Seiten
Springer International Publishing (Verlag)
978-3-030-22574-2 (ISBN)

Lese- und Medienproben

Fuzzy Collaborative Forecasting and Clustering - Tin-Chih Toly Chen, Katsuhiro Honda
Systemvoraussetzungen
53,49 inkl. MwSt
(CHF 52,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces the basic concepts of fuzzy collaborative forecasting and clustering, including its methodology, system architecture, and applications. It demonstrates how dealing with disparate data sources is becoming more and more popular due to the increasing spread of internet applications. The book proposes the concepts of collaborative computing intelligence and collaborative fuzzy modeling, and establishes several so-called fuzzy collaborative systems. It shows how technical constraints, security issues, and privacy considerations often limit access to some sources. This book is a valuable source of information for postgraduates, researchers and fuzzy control system developers, as it presents a very effective fuzzy approach that can deal with disparate data sources, big data, and multiple expert decision making.

Tin-Chih Toly Chen received the Ph. D. degree in industrial engineering from National Tsin Hua University. He is now a Distinguished Professor in the Department of Industrial Engineering and Management at National Chiao Tung University. His research interests include fuzzy and neural computing, competitiveness analysis, cloud manufacturing, operations research, semiconductor manufacturing, and ambient intelligence. Dr. Chen has published over one hundred papers in refereed journals, and is the recipient of several research and paper awards. Dr. Chen is the founding editor of International Journal of Fuzzy System Applications and the founding president of Ambient Intelligence Association of Taiwan. He has been the editor or guest editor of journals including Fuzzy Sets and Systems, Journal of Intelligent Manufacturing, International Journal of Advanced Manufacturing Technology, International Journal of Technology Management, Robotics and Computer-Integrated Manufacturing, and International Journal of Intelligent Systems.

Katsuhiro Honda received the B.E., M.E. and D.Eng. Degrees in industrial engineering from Osaka Prefecture University, Osaka, Japan, in 1997,
1999 and 2004, respectively. From 1999 to 2013, he was a Research Associate, Assistant Professor and Associate Professor at Osaka Prefecture University, where he is a Professor in the Department of Computer Sciences and Intelligent Systems. His research interests include hybrid techniques of fuzzy clustering and multivariate analysis, data mining with fuzzy data analysis and neural networks. He has published over 80 papers in refereed journals and has presented over 200 papers in refereed international conferences. He received the best paper awards at FUZZ-IEEE 2008 and SCIS&ISIS2016, publication award and paper awards from Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT) in 2010 and 2002, 2011 and 2012, respectively. He has been the associate editor or guest editor of International Journal of Knowledge Engineering and Soft Data Paradigms, Advances in Fuzzy Systems, Mathematical Problems in Engineering and Applied Spatial Analysis and Policy.

Erscheint lt. Verlag 14.6.2019
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo IX, 89 p. 42 illus., 9 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Applied Soft Computing • Big data analysis • Clustering • Collaborative Computing Intelligence • Collaborative Fuzzy Modelling • Data-driven Science, Modeling and Theory Building • Disparate Data Sources • Forecasting • Fuzzy Collaborative Intelligence • Fuzzy Collaborative System • Multiple Expert Decision Making
ISBN-10 3-030-22574-7 / 3030225747
ISBN-13 978-3-030-22574-2 / 9783030225742
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95