Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Applied Data Science (eBook)

Lessons Learned for the Data-Driven Business
eBook Download: PDF
2019 | 1st ed. 2019
XIII, 465 Seiten
Springer International Publishing (Verlag)
978-3-030-11821-1 (ISBN)

Lese- und Medienproben

Applied Data Science -
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other.  

With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are.  

The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want  to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

 




Prof. Dr. Martin Braschler is a senior lecturer at the Zurich University of Applied Sciences (ZHAW), as well as head of the Information Engineering group that is located at the Institute of Applied Information Technology. His main research interests are in the field of unstructured information, specifically information retrieval evaluation, cross-language information retrieval, and natural language processing. He was one of the original initiators of the CLEF campaigns, which are the largest European forum for benchmarking of systems from the area of information retrieval and related fields. Prior to joining ZHAW, he served as head of research and innovation at Eurospider Information Technology AG, Zurich, Switzerland, a vendor of information retrieval solutions, and has thus extensive experience in the transfer of state-of-the-art technology to the commercial marketplace.

Prof. Dr. Thilo Stadelmann is a senior lecturer in computer science at ZHAW School of Engineering in Winterthur. His current research focuses on applications of machine learning, especially deep learning, to diverse kinds of data. He is head of the ZHAW Data Science Laboratory and member of the board of the Swiss Alliance for Data-Intensive Services. Before joining ZHAW, Thilo headed a team of software developers and data miners at TWT GmbH Science & Innovation, developing tailor-made data management applications for the German automotive industry. He has more than 10 years of experience as a professional software developer.

Prof. Dr. Kurt Stockinger is a senior lecturer in computer science at ZHAW and Director of Studies in Data Science. His research focuses on data warehousing (DWH), business intelligence (BI) and Big Data. He is also on the Advisory Board of Callista Group AG. Before joining ZHAW, Kurt was a DWH and BI Architect at Credit Suisse, Zurich where he worked on designing and implementing algorithms for a terabyte-scale enterprise data warehouse, data security, and DWH/BI applications. Prior, Kurt worked for four years at Lawrence Berkeley National Laboratory performing research on multi-dimensional indexing and query methods for large-scale scientific data as well as high-performance visual analytics. From 2000 to 2003 Kurt was heading the Replica Optimization Team of the EU Data Grid Project at CERN. In 2001 Kurt was a visiting researcher at California Institute of Technology.
Erscheint lt. Verlag 13.6.2019
Zusatzinfo XIII, 465 p. 121 illus., 92 illus. in color.
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft
Schlagworte Big Data • Data Analysis • Data Science • Information storage and retrieval • Information Systems Applications • machine learning
ISBN-10 3-030-11821-5 / 3030118215
ISBN-13 978-3-030-11821-1 / 9783030118211
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
CHF 48,75