Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning with PySpark - Pramod Singh

Machine Learning with PySpark

With Natural Language Processing and Recommender Systems

(Autor)

Buch | Softcover
223 Seiten
2018 | 1st ed.
Apress (Verlag)
978-1-4842-4130-1 (ISBN)
CHF 44,90 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. 
Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. 
After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.
What You Will Learn

Build a spectrum of supervised and unsupervised machine learning algorithms

Implement machine learning algorithms with Spark MLlib libraries

Develop a recommender system with Spark MLlib libraries

Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model


Who This Book Is For 
Data science and machine learning professionals. 

Pramod Singh is an established data scientist with over eight years of experience in data and solving business challenges. He has worked in organizations such as Infosys, Tally and SapientRazorfish. Also, president of a data science meet-up group and regular speaker at various webinars. Recently spoke at major conference: GIDS 2018 and presented a session on “Sequence Embedding in Spark” which was well received. He has an online Udemy course on machine learning.

Chapter 1: Evolution of Data



Chapter 2: Introduction to Machine Learning



Chapter 3: Data Processing



Chapter 4: Linear Regression



Chapter 5: Logistic Regression

Chapter 6: Random Forests



Chapter 7: Recommender Systems



Chapter 8: Clustering



Chapter 9: Natural Language Processing

Erscheinungsdatum
Zusatzinfo 1 Illustrations, color; 149 Illustrations, black and white; XVIII, 223 p. 150 illus., 1 illus. in color.
Verlagsort Berkley
Sprache englisch
Maße 155 x 235 mm
Gewicht 454 g
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Allgemeines / Lexika
Schlagworte machine learning • PySpark • Python • Recommender Systems • Reinforcement Learning • supervised learning • Unsurpervised Learning
ISBN-10 1-4842-4130-4 / 1484241304
ISBN-13 978-1-4842-4130-1 / 9781484241301
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20