Deep Belief Nets in C++ and CUDA C: Volume 3
Apress (Verlag)
978-1-4842-3720-5 (ISBN)
At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download.
What You Will Learn
Discover convolutional nets and how to use them
Build deep feedforward nets using locally connected layers, pooling layers, and softmax outputs
Master the various programming algorithms required
Carry out multi-threaded gradient computations and memory allocations for this threading
Work with CUDA code implementations of all core computations, including layer activations and gradient calculations
Make use of the CONVNET program and manual to explore convolutional nets and case studies
Who This Book Is For
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.
Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored five books on practical applications of predictive modeling: Practical Neural Network Recipes in C++ (Academic Press, 1993); Signal and Image Processing with Neural Networks (Wiley, 1994); Advanced Algorithms for Neural Networks (Wiley,1995); Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995); Data Mining Algorithms in C++ (Apress, 2018); Assessing and Improving Prediction and Classification (Apress, 2018); Deep Belief Nets in C++ and CUDA C: Volume 1 (Apress, 2018); and Deep Belief Nets in C++ and CUDA C: Volume 2 (Apress, 2018).
1. Feedforward Networks.- 2. Programming Algorithms.- 3. CUDA Code.- 4. CONVNET Manual.
Erscheinungsdatum | 21.07.2018 |
---|---|
Zusatzinfo | 13 Illustrations, black and white; XII, 176 p. 13 illus. |
Verlagsort | Berkley |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Compilerbau | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Wirtschaft ► Allgemeines / Lexika | |
Schlagworte | AI • algorithms • Artificial Intelligence • Big Data • C++ • Code • convolution • CUDA C • deep belief • Deep learning • machine learnign • Networks • Numerical • programming • source |
ISBN-10 | 1-4842-3720-X / 148423720X |
ISBN-13 | 978-1-4842-3720-5 / 9781484237205 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich