Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Partition Function Form Games (eBook)

Coalitional Games with Externalities
eBook Download: PDF
2018 | 1st ed. 2018
XXI, 312 Seiten
Springer International Publishing (Verlag)
978-3-319-69841-0 (ISBN)

Lese- und Medienproben

Partition Function Form Games - László Á. Kóczy
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents a systematic overview on partition function form games: a game form in cooperative game theory to integrate externalities for various applications. Cooperative game theory has been immensely useful to study a wide range of issues, but the standard approaches ignore the side effects of cooperation. Recently interest shifted to problems where externalities play the main roles such as models of cooperation in market competition or the shared use of public resources. Such problems require richer models that can explicitly evaluate the side-effects of cooperation. In partition function form games the value of cooperation depends on the outsiders' actions. A recent surge of interest driven by applications has made results very fragmented. This book offers an accessible, yet comprehensive and systematic study of properties, solutions and applications of partition function games surveying both theoretical results and their applications. It assembles a survey of existing research and smaller original results as well as original interpretations and comparisons. The book is self-contained and accessible for readers with little or no knowledge of cooperative game theory.




László Á. Kóczy graduated from the University of Cambridge reading mathematics and computer science, but turned to economics and completed his M.Sc. and Ph.D. at the Catholic University Leuven under the supervision of Luc Lauwers. He spent some years at Maastricht University before returning to Hungary, to Óbuda University. In 2010 he was the first social scientist to obtain the prestigious Momentum Grant of the Hungarian Academy of Sciences allowing him to set up his Game Theory Research Group at the Centre for Economics and Regional Studies. Kóczy has made contributions to scientometrics and social choice, but his main field of research is cooperative game theory: cooperative games with externalities and power indices.
László Á. Kóczy is member of the Game Theory Society, the Society for Social Choice and Welfare and a founding member and former president of the Hungarian Society for Economists. He has published over thirty papers in journals including Games and Economic Behavior, Economic Theory, and Social Choice and Welfare.

László Á. Kóczy graduated from the University of Cambridge reading mathematics and computer science, but turned to economics and completed his M.Sc. and Ph.D. at the Catholic University Leuven under the supervision of Luc Lauwers. He spent some years at Maastricht University before returning to Hungary, to Óbuda University. In 2010 he was the first social scientist to obtain the prestigious Momentum Grant of the Hungarian Academy of Sciences allowing him to set up his Game Theory Research Group at the Centre for Economics and Regional Studies. Kóczy has made contributions to scientometrics and social choice, but his main field of research is cooperative game theory: cooperative games with externalities and power indices. László Á. Kóczy is member of the Game Theory Society, the Society for Social Choice and Welfare and a founding member and former president of the Hungarian Society for Economists. He has published over thirty papers in journals including Games and Economic Behavior, Economic Theory, and Social Choice and Welfare.

Foundations: Purpose of the Book.- Terminology and Notation.- Preliminaries.- Stability: Dominance.- The Core.- Implementation of the Core.- Other Stability Concepts.- Fairness: Axioms.- The Shapley-value.- Other Values.- Applications: Oligopoly Models.- Environmental Applications.- Femtocell Networks.- Further Applications.

Erscheint lt. Verlag 13.4.2018
Reihe/Serie Theory and Decision Library C
Theory and Decision Library C
Zusatzinfo XXI, 312 p. 42 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft Volkswirtschaftslehre
Schlagworte Behavioral expectations • coalition formation • Cooperative games with externalities • cooperative game theory • Core • Game Theory • International environmental agreements • Oligopoly mergers • Partition function form • Public good games • Shapley Value • Stability of agreements • Stable payoff configurations
ISBN-10 3-319-69841-9 / 3319698419
ISBN-13 978-3-319-69841-0 / 9783319698410
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich