Deep Belief Nets in C++ and CUDA C: Volume 2
Apress (Verlag)
978-1-4842-3645-1 (ISBN)
At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.
What You'll Learn
Code for deep learning, neural networks, and AI using C++ and CUDA C
Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more
Use the Fourier Transform for image preprocessing
Implement autoencoding via activation in the complex domain
Work with algorithms for CUDA gradient computation
Use the DEEP operating manual
Who This Book Is For
Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.
Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored five books on practical applications of predictive modeling: Practical Neural Network Recipes in C++ (Academic Press, 1993) Signal and Image Processing with Neural Networks (Wiley, 1994) Advanced Algorithms for Neural Networks (Wiley, 1995) Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995) Assessing and Improving Prediction and Classification (CreateSpace, 2013) Deep Belief Nets in C++ and CUDA C: Volume I: Restricted Boltzmann Machines and Supervised Feedforward Networks (CreateSpace, 2015).
0. Introduction.- 1. Embedded Class Labels.- 2. Signal Preprocessing.- 3. Image Preprocessing.- 4. Autoencoding.- 5. Deep Operating Manual.
Erscheinungsdatum | 21.06.2018 |
---|---|
Zusatzinfo | 47 Illustrations, black and white; XI, 258 p. 47 illus. |
Verlagsort | Berkley |
Sprache | englisch |
Maße | 178 x 254 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Mathematik / Informatik ► Informatik ► Software Entwicklung | |
Informatik ► Theorie / Studium ► Compilerbau | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Wirtschaft ► Allgemeines / Lexika | |
Schlagworte | AI • algorithms • artificial intel • autoencoding • Belief Networks • C++ • complex domain • computer vision • CUDA C • CV • deep belief • Deep learning • Domain • machine learning • Networks • Numerical • programming • source code |
ISBN-10 | 1-4842-3645-9 / 1484236459 |
ISBN-13 | 978-1-4842-3645-1 / 9781484236451 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich