Nicht aus der Schweiz? Besuchen Sie lehmanns.de
China's High-Speed Rail Technology -

China's High-Speed Rail Technology (eBook)

An International Perspective
eBook Download: PDF
2017 | 1st ed. 2018
XXIII, 594 Seiten
Springer Singapore (Verlag)
978-981-10-5610-9 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
(CHF 177,70)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents cutting-edge theories, techniques, and methodologies in the multidisciplinary field of high-speed railways, sharing the revealing insights of elite scholars from China, the UK and Japan. It demonstrates the achievements that have been made regarding high-speed rail technologies in China from all aspects, while also providing a macro-level comparative study of related technologies in different countries. The book offers a valuable resource for researchers, engineers, industrial practitioners, graduate students, and professionals in the fields of Vehicles, Traction Power Supplies, Materials, and Infrastructure.





This book presents cutting-edge theories, techniques, and methodologies in the multidisciplinary field of high-speed railways, sharing the revealing insights of elite scholars from China, the UK and Japan. It demonstrates the achievements that have been made regarding high-speed rail technologies in China from all aspects, while also providing a macro-level comparative study of related technologies in different countries. The book offers a valuable resource for researchers, engineers, industrial practitioners, graduate students, and professionals in the fields of Vehicles, Traction Power Supplies, Materials, and Infrastructure.

Foreword 6
Preface 9
Contents 11
Editors and Contributors 15
Copy editors: 22
Overview of High-Speed Rail Technology Around the World 23
1 Sustainability Development Strategy of China’s High-Speed Rail 24
1 Overview 24
2 Innovation Achievements of China’s High-Speed Rail Technology 25
2.1 Basic Theory Study of the High-Speed Train 26
2.2 Design and Manufacturing Technologies of the High-Speed Train 27
3 Engineering Application of Domestic High-Speed Train 29
3.1 Opening and Operation of the Wuhan–Guangzhou High-Speed Train 29
3.2 Opening of the Beijing–Shanghai High-Speed Line 30
3.3 Domestic 400 km/h Comprehensive Inspection Car Came off the Assembly Line 30
4 Development Prospect of China’s High-Speed Rail Technology 31
4.1 China’s High-Speed Rail Network Plan in the Next 10 Years 31
4.2 Study and Deployment of China’s High-Speed Rail Research in the Next 5 Years 34
4.2.1 Safety Assurance Technology of the Rail Transit System 34
4.2.2 High-Energy Efficiency of Traction Power Supply and Transmission Key Techniques of Rail Transit 34
4.2.3 Life Cycle Maintenance Technique of Rail Transit 35
4.2.4 Guided Transport System Mode Diversification and Equipment Study 35
4.2.5 Key Technology for 400 km/h and Above High-Speed Passenger Transport Equipment 36
4.2.6 Railway Comprehensive Effectiveness and Service Level Improvement Under High-Speed Rail Network Conditions 36
4.2.7 Regional Rail Transport Co-transport and Service Technology 36
4.2.8 Space–Air–Train–Ground Integrated Rail Transport Safety and Control Technology 37
4.2.9 Rail Transit Freight Transportation Rapid Technology and Equipment Studies 37
4.2.10 Key Technology Study and Equipment Development of a Maglev Transport System 38
5 Conclusions 38
Appendix 39
References 45
2 Key Problems Faced in High-Speed Train Operation 48
1 Introduction 48
2 Train-Track Coupling System Dynamic Model 50
3 Interaction of Wheel/Rail 52
4 Vibration and Noise 55
5 Further Work 57
Appendix 58
References 63
3 Background of Recent Developments of Passenger Railways in China, the UK and Other European Countries 67
1 Early Railway Development in China and the UK 67
2 Further Development of the Railways 68
3 Speed-up and High Speed Rail in the UK 69
4 Channel Tunnel and Its Link to London 71
5 Development of High Speed in Europe 73
6 Safety of High Speed Trains 74
7 Railway Research in the UK 76
8 Development of High Speed in China 78
9 Future High Speed Rail in the UK 79
10 Concluding Remarks 79
Appendix 80
Brief Bibliography 83
References 83
4 Comparison of the Technologies of the Japanese Shinkansen and Chinese High-Speed Railways 86
1 Brief History of Japanese and Chinese High-Speed Railways 87
2 Comparison of HSRs in Japan and China by Basic Transportation Figures 87
3 Comparison of Technological Achievements of HSRs in Japan and in China 88
3.1 Outline 88
3.1.1 Original Technologies of Japan and of China 88
3.1.2 Original Design of Japan’s Cars: Development of Lightweight Bogies with Stable Operation at High Speed (Sone 2014) 89
3.1.3 Original Design of Japan’s Cars: Distributed Traction System with All Axles Motored 90
3.1.4 Chinese Design Concept 91
3.2 Comparison of Achievements of the HSR in Japan and in China Relating to Subsystems Used 92
3.2.1 Power Feeding System 92
3.2.2 Electromagnetic Compatibility 92
3.2.3 Phase Balancing Measures After Introduction of Regenerative Trains 93
3.2.4 Result of Lightweight Design of Cars 94
3.2.5 Cab Signal ATC 94
3.2.6 Poor Tracks and Infrastructure in Japan 95
4 Other Developed Countries’ HSR Technologies (Akiyama 2014) 95
4.1 Britain 95
4.2 France and Germany 96
4.3 French Versus Japanese Technologies 96
4.4 French Versus Japanese Technologies in Recent Years 97
5 Technologies of Chinese Origin 98
6 Further Discussion on Technologies of Japan and China 100
6.1 Optimum Motored to Non-motored Cars (MT) Ratio and Brake System Design 100
6.2 Safety and Reliable Design and Operation 101
6.3 Design of Automatic Train Protection (ATP) 101
7 Peculiarity of Japanese and Chinese Railways 102
8 Important Relationship to Be Kept Between Japanese and Chinese HSRs 102
9 Conclusions 103
Appendix 103
References 105
Aerodynamics of High-Speed Rail 107
5 Unsteady Simulation for a High-Speed Train Entering a Tunnel 108
1 Introduction 108
2 Fundamental Flow Equations 109
3 Computational Domain and Mesh Generation 110
4 Results 111
4.1 Description of the Wave Propagation Process 111
4.2 Pressure Difference Amplitudes on the Train Surface and the Tunnel Wall 113
4.3 Microwave 114
4.4 Aerodynamic Forces of the Train 116
5 Conclusions 119
Acknowledgements 119
References 119
6 Aerodynamic Modeling and Stability Analysis of a High-Speed Train Under Strong Rain and Crosswind Conditions 121
1 Introduction 121
2 Numerical Simulation 123
2.1 Computational Model 123
2.2 Computational Domain 123
2.3 Computational Mesh 124
2.4 Boundary Conditions 125
3 Problem Description 125
4 Results and Discussion 126
4.1 Pressure Distribution on the Train Surface 126
4.2 Aerodynamic Force of Train Under Strong Rain and Crosswind Conditions 126
4.3 Aerodynamic Moment of Train Under Strong Rain and Crosswind Conditions 129
4.4 Stability Analysis of the Train Under Rain and Crosswind Conditions 129
5 Conclusions 132
References 132
7 Numerical Study on the Aerodynamic Performance and Safe Running of High-Speed Trains in Sandstorms 135
1 Introduction 135
2 Mathematical Model and Numerical Simulation 137
2.1 Eulerian–Eulerian Multiphase Model 137
2.2 Computational Simulation 138
2.3 Validation of the Numerical Model 139
2.3.1 Verification of Eulerian Two-Phase Model 139
2.3.2 Verification of the Train Model 139
3 Results and Discussion 141
3.1 Influence of Sand on the Drag Force 141
3.2 Influence of Sand on the Lift Force 142
3.3 Influence of Sand on the Side Force 143
3.4 Influence of Sand on the Overturning Moment 143
3.5 Influence of Sand on the Train’s Safety and Recommended Speed Limit Under Crosswind 144
4 Conclusions 146
References 147
8 Influence of Aerodynamic Braking on the Pressure Wave of a Crossing High-Speed Train 149
1 Introduction 149
2 Model of a High-Speed Train and Grids Partition 150
2.1 Geometric Model of a High-Speed Train with Aerodynamic Braking 150
2.2 Calculation Area and the Mesh Partition 150
2.2.1 Selected Section for the Calculation Area 150
2.2.2 Mesh Partition of a Single Train 152
2.2.3 Sliding Mesh 152
3 Numerical Simulation of the Aerodynamic Status of Crossing High-Speed Trains 153
3.1 Characteristic of the Air Flow Field 154
3.2 Influence of Aerodynamic Braking on the Crossing Train 154
4 Conclusions 157
References 158
9 A Numerical Approach to the Interaction Between Airflow and a High-Speed Train Subjected to Crosswind 159
1 Introduction 159
2 Governing Equations 161
2.1 Equations of Fluid Dynamics 161
2.2 Equations of Vehicle-Track Coupling Dynamics 161
3 Numerical Approach to the Interaction 162
3.1 Vehicle-Track Dynamics Solution Technique 162
3.2 Dynamic Mesh Technique 163
3.3 Solution Strategies 163
4 Computational Model and Domain 164
5 Numerical Simulation 167
5.1 Aerodynamics and Displacements 167
5.1.1 Head Coach 167
5.1.2 Middle Coach 170
5.1.3 Tail Coach 172
5.2 Dynamic Performances of Vehicle Track 174
6 Conclusions 177
References 177
10 Multi-objective Optimization Design Method of the High-Speed Train Head 180
1 Introduction 180
2 Basic Concepts and Optimization Process 183
2.1 Basic Concepts of Multi-objective Optimization 183
2.2 Multi-objective Optimization Process 184
3 3D Parametric Model of the Train 184
3.1 Entity Model of the Left Half of the Train Head 185
3.2 Parametric Model of the High-Speed Train 186
3.3 Optimization Design Variables 186
4 Aerodynamic Model 188
5 Vehicle System Dynamics Model 189
6 Multi-objective Optimization Algorithm 190
7 Numerical Simulation 191
8 Conclusion 194
References 195
11 Study on the Safety of Operating High-Speed Railway Vehicles Subjected to Crosswinds 198
1 Introduction 198
2 Dynamic Model of Coupled Vehicle–Track System in Crosswinds 200
2.1 Vehicle Model 201
2.2 Track Model 203
2.3 Wheel-Rail Contact Model 206
2.4 Vehicle–Track Excitation Model 207
2.5 Aerodynamic Forces on the Vehicle 208
3 Methods for Safety Assessment of Crosswinds 210
4 Simulation of High-Speed Vehicle Dynamic Behavior Under Crosswinds 211
4.1 Vehicle Dynamic Responses to Crosswind 212
4.2 Effect of Crosswind Attack Angle 216
4.3 Combined Effects of Vehicle Speed and Crosswind Speed 216
5 Evaluation of Operational Safety Area for High-Speed Vehicles Under Crosswind Excitations 219
6 Conclusion 221
References 223
High-Speed Rail Infrastructure and Material Innovations 225
12 A 2.5D Finite Element Approach for Predicting Ground Vibrations Generated by Vertical Track Irregularities 226
1 Introduction 226
2 2.5D Finite Element Method 228
3 Mathematical Model of Train Running on Track with Harmonic Irregularities 230
4 Numerical Results and Discussion 232
4.1 Effect of Amplitude of Track Irregularities on Dynamic Responses 233
4.2 Effect of Wavelength of Track Irregularities on Dynamic Responses 240
5 Conclusions 241
References 242
13 Smart Elasto-Magneto-Electric (EME) Sensors for Stress Monitoring of Steel Structures in Railway Infrastructures 244
1 Introduction 244
2 Tested Steel Bars 246
3 Magneto-Electric Sensing Unit 247
3.1 Working Principle 247
3.2 Performance Tests 248
4 Smart EME Sensor and Tension Tests 251
5 Conclusions 253
References 254
14 Recent Research on the Track-Subgrade of High-Speed Railways 256
1 Background 256
2 Dynamic Response of Track-Subgrade 257
3 Post-construction Settlement of the Track-Subgrade 259
4 Long-Term Serviceability of Subgrade 260
5 Summary 260
References 261
15 Microstructure and Properties of Cold Drawing Cu-2.5% Fe-0.2% Cr and Cu-6% Fe Alloys 263
1 Introduction 263
2 Materials and Methods 265
3 Results 265
4 Discussion 268
5 Conclusions 270
References 270
16 Microstructure and Hardness of Cu-12% Fe Composite at Different Drawing Strains 275
1 Introduction 275
2 Materials and Methods 276
3 Results 277
3.1 Microstructure 277
3.2 Structure Orientation 279
3.3 Vickers Hardness 281
4 Discussion 281
4.1 Microstructure Evolution 281
4.2 Hardness 284
5 Conclusions 285
References 286
High-Speed Rail Wheel/Rail Dynamics 289
17 Modeling of High-Speed Wheel–Rail Rolling Contact on a Corrugated Rail and Corrugation Development 290
1 Introduction 290
2 Model Descriptions 293
2.1 FE Model 293
2.1.1 An Overview 293
2.1.2 A Typical Process of Numerical Simulation and the Explicit Time Integration 295
2.1.3 Traction and Creepage 296
2.1.4 Material Model 298
2.2 Frictional Work and Wear Prediction 298
2.3 Corrugation Model 299
3 Results of Smooth Contact Surface 300
3.1 Dynamic Relaxation 300
3.2 Longitudinal and Vertical Forces 301
3.3 Contact Stresses and Frictional Work 302
4 Corrugation 304
4.1 Measurements on a High-Speed Line 304
4.2 Transient Wheel–Rail Interaction 305
4.3 Different Wavelengths and Depths 308
4.4 Different Traction Coefficients 309
4.5 Different Rolling Speeds 311
4.6 Comparison with the Multi-body Approach 312
5 Discussion 313
6 Summary and Conclusions 315
References 316
18 A 3D Model for Coupling Dynamics Analysis of High-Speed Train/Track System 320
1 Introduction 320
2 3D Modeling of High-Speed Train/Track System 323
2.1 Modeling Vehicle Subsystem 323
2.2 Modeling the Inter-vehicle Connection Subsystem 328
2.3 Modeling the Track Subsystem 330
2.4 Modeling the Wheel/Rail Contact Subsystem 333
2.5 Train/Track Excitation Model 335
2.6 Initial and Boundary Conditions of the Coupled Train/Track System 336
3 Verification of the Train/Track Model 337
4 Comparison of Dynamic Performances Obtained by TTM and VTM 339
4.1 Comparison of Vibration Frequency Components 339
4.2 Comparison of Ride Comfort 342
4.3 Comparison of Curving Performance 344
5 Conclusions 347
References 348
19 Effect of the First Two Wheelset Bending Modes on Wheel–Rail Contact Behavior 351
1 Introduction 351
2 Vehicle–Track Coupling Dynamic System 353
2.1 Flexible Wheelset Model 354
2.2 Wheel–Rail Contact Model 364
3 Results and Discussion 368
4 Conclusions 371
Appendix A 372
Appendix B 372
References 380
20 Influence of Wheel Polygonal Wear on Interior Noise of High-Speed Trains 382
1 Introduction 383
2 Measurement of Wheel Polygon and Vehicle Noise and Vibration 384
2.1 Test Overview 384
2.2 Characteristics of Wheel Diameter Difference and Polygon 385
2.3 Effect of Re-profiling on Vehicle Noise and Vibration 387
3 Model of Polygonal Wheel for Wheel/Rail Rolling Noise Calculation 388
3.1 Characteristics of Two Wheels with the Same Diameter Difference 389
3.2 Theory of Wheel/Rail Rolling Noise Prediction 390
3.3 Wheel/Rail Rolling Noise Prediction Results 394
4 Prediction Model of Interior Noise of Coach 396
4.1 Theory of the Hybrid FE-SEA 397
4.2 Interior Noise Simulation Model of the Coach End 398
5 Influence of Different Wheel Polygonal Wear on Noise 400
5.1 Characteristics of Wheel Polygon 400
5.2 Effect of Different Order of Wheel Polygon on Noise 401
5.3 Effect of Different Roughness Levels of Wheel Polygon on Noise 403
5.4 Effect of Different Phases of Wheel Polygon on Noise 405
6 Conclusions 408
Acknowledgements 409
References 409
21 Investigation into External Noise of a High-Speed Train at Different Speeds 411
1 Introduction 411
2 Noise Source Identification of High-Speed Train 413
2.1 Facility and Its Principle 413
2.2 Measurement of High-Speed Train Noise Sources 415
2.3 Frequency Characteristics of Main Noise Sources 419
2.4 Characteristics of SEL at Different Speeds 422
3 Pass-by Noise Magnitude and Its Characteristics 427
4 External Noise Behaviors as a Function of Speed 430
5 Conclusions 431
References 432
22 Effect of Softening of Cement Asphalt Mortar on Vehicle Operation Safety and Track Dynamics 434
1 Introduction 435
2 Coupling Dynamic Model of Vehicle and CRTS-I Slab Track 436
2.1 Dynamic Model of Vehicle Subsystem 436
2.2 Dynamic Model of Slab Track Subsystem 438
2.3 Model of Wheel-Rail Interaction in Rolling Contact 438
2.4 CAM Softening in the Vehicle-Track Coupling Dynamic Model 439
2.5 Evaluation Criteria of Railway Vehicle Derailment 439
3 Track/Subgrade Coupling Model 440
3.1 Finite Difference Model of Slab Track and Subgrade 440
3.2 CAM Softening in the Track Finite Difference Model 441
3.3 Contact Model of Track 441
3.4 Loading on the Track-Subgrade Finite Difference Model 443
4 Results and Discussion 443
4.1 Effect of CAM Softening on High-Speed Vehicle Operation Safety 444
4.2 Effect of CAM Softening on Track Displacement 444
4.3 Effect of CAM Softening on Slab Stress and Track Interface Failure 447
5 Conclusions 449
References 450
Advances in Traction Power Supply and Transportation Organization Technologies 452
23 A Two-Layer Optimization Model for High-Speed Railway Line Planning 453
1 Introduction 454
2 Decision Support Mechanism (DSM) for Line Planning 455
2.1 Stop-Schedule Optimization 456
2.2 Passenger Assignment Optimization 456
3 Modeling of Line Planning 457
3.1 Input Data 457
3.2 Model of the Stop-Schedule Optimization 458
3.2.1 Decision Variables 458
3.2.2 Objective Functions 458
3.2.3 Constraints 459
3.2.4 Coding and Initialization 460
3.2.5 Crossover Operator 461
3.2.6 Mutation Operator 461
3.2.7 Reproduction Operator 462
3.2.8 Termination 462
3.3 Model of the Passenger Assignment 462
3.3.1 Objective Functions 462
3.3.2 Constraints 463
4 Case Studies 463
4.1 Taiwan HSR 463
4.2 Beijing-Shanghai HSR 465
5 Conclusions and Future Work 468
References 469
24 Dynamic Performance of a Pantograph–Catenary System with the Consideration of the Appearance Characteristics of Contact Surfaces 472
1 Introduction 472
2 Model of the Pantograph–Catenary System 473
2.1 Catenary Model 473
2.2 Pantograph Model 474
2.3 Pantograph–Catenary System Model 475
3 Results of the Dynamic Performance 476
4 Validation by a Field Test 479
5 Analysis of the Influence of Contact Wire Irregularity 481
6 Analysis of the Influence of Double Pantographs 483
7 Conclusions 484
References 484
25 Design and Reliability, Availability, Maintainability, and Safety Analysis of a High Availability Quadruple Vital Computer System 486
1 Introduction 486
2 System Design 489
3 Hardware and Embedded Safe Operation System (ES-OS) 491
4 Safety Bus and Deterministic Communication Schedule 494
5 System Modeling 496
6 Evaluation 498
6.1 Reliability 498
6.2 Availability 498
6.3 Maintainability 498
6.4 Safety 500
7 Conclusions 500
References 500
26 Design and Analysis of the Hybrid Excitation Rail Eddy Brake System of High-Speed Trains 502
1 Introduction 502
2 Theory of Eddy Brake System 503
2.1 Lift System of the Brake System 505
2.1.1 Status of Relief 505
2.1.2 Status of Brake 505
2.2 Brake Exciting System 506
2.3 Main Parameters of the Brake System 507
3 Simulation 508
3.1 Creating Finite Element Method (FEM) Model 508
3.2 Effects of Gap 510
3.2.1 When There is no Exciting 510
3.2.2 When There is Exciting 513
3.3 Effects of Electricity 514
4 Optimization 515
5 Conclusions 517
References 518
27 Simulation Software for CRH2 and CRH3 Traction Driver Systems Based on SIMULINK and VC 520
1 Introduction 520
2 Simulation Model 521
3 Developed Simulation Software 523
4 Simulation Results 524
4.1 Traction and Brake Performance of CRH2 524
4.2 Speed Regulation Performance Simulation 526
4.3 Transient Performance of Fault Condition 526
5 Conclusions 527
References 528
28 Electromagnetic Environment Around a High-Speed Railway Using Analytical Technique 531
1 Introduction 532
2 Magnetic Field Formulae 534
2.1 Geometry of Railway System 534
2.2 Integrated Formulae 534
2.3 Trapped Surface Wave 536
2.4 Lateral Wave 537
2.5 Final Formulae for the Magnetic Field 538
3 Computation Results and Comparison 538
4 Conclusions 541
Appendix 541
References 542
29 Optimal Condition-Based Maintenance Strategy Under Periodic Inspections for Traction Motor Insulations 545
1 Introduction 546
2 Problem Statement and Description 547
3 Mathematical Model Development 550
3.1 Failure Rate of Insulations Under Shocks 550
3.2 State Transition Probability During a Single Inspection Interval 551
3.3 Mathematical Models for the Variables in the Optimization Model 553
3.3.1 Expected Time at State 0 within a Cycle 553
3.3.2 Expected Time at State 1 in a Cycle 554
3.3.3 Probability of PM and CM in a Cycle 554
3.3.4 Expected Number of Inspections in a Cycle 555
4 Special Case 555
4.1 State Transition Probability Within One Inspection Interval 556
4.2 Mathematical Models for the Variables in Optimization Model 556
4.3 Probability of PM, CM, and the Expected Number of Inspections in One Cycle 557
5 Numerical Investigation and Discussion 557
6 Conclusions 559
References 560
30 A Combined Simulation of High-Speed Train Permanent Magnet Traction System Using Dynamic Reluctance Mesh Model and Simulink 564
1 Introduction 565
2 Dynamic Reluctance Mesh Model 565
2.1 Principle of Basic Reluctance Mesh (RM) Model 565
2.2 Dynamic Reluctance Mesh Model 567
2.3 DRM Model of the PM Traction Motor 567
2.4 Simulation Results of DRM Model 568
3 Combined Model Using DRM and Simulink 570
3.1 Dynamic Modeling and Interface 571
3.2 Vector Control System 572
3.3 Combine DRM and Simulink Model 573
4 Simulation Results 574
4.1 Constant Parameter PMSM Traction System Simulink Models 574
4.2 Combined Simulation Using DRM and Simulink 574
5 Conclusions 577
References 578
31 3D Thermal Analysis of a Permanent Magnet Motor with Cooling Fans 580
1 Introduction 581
2 AFPM Machine 582
3 CFD Modeling 582
4 Analysis of CFD Results 588
5 Conclusions 588
References 589
Index 591

Erscheint lt. Verlag 15.12.2017
Reihe/Serie Advances in High-speed Rail Technology
Advances in High-speed Rail Technology
Zusatzinfo XXIII, 594 p. 343 illus.
Verlagsort Singapore
Sprache englisch
Themenwelt Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Wirtschaft
Schlagworte China’s High-Speed Train • Dynamic Response • Eddy brake • Ground vibration • High-Speed Railway Technology • High-Speed Train • Hybrid excitation • Long-term serviceability • Track irregularities • Train/Track coupling system dynamics • Vibration-noise reduction technology
ISBN-10 981-10-5610-2 / 9811056102
ISBN-13 978-981-10-5610-9 / 9789811056109
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
CHF 117,20