Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Handbook of Industrial Chemistry and Biotechnology (eBook)

eBook Download: PDF
2017 | 13th ed. 2017
XVIII, 2225 Seiten
Springer International Publishing (Verlag)
978-3-319-52287-6 (ISBN)

Lese- und Medienproben

Handbook of Industrial Chemistry and Biotechnology -
Systemvoraussetzungen
683,73 inkl. MwSt
(CHF 659,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This widely respected and frequently consulted reference work provides a wealth of information and guidance on industrial chemistry and biotechnology. Industries covered span the spectrum from salt and soda ash to advanced dyes chemistry, the nuclear industry, the rapidly evolving biotechnology industry, and, most recently, electrochemical energy storage devices and fuel cell science and technology.

Other topics of surpassing interest to the world at large are covered in chapters on fertilizers and food production, pesticide manufacture and use, and the principles of sustainable chemical practice, referred to as green chemistry.

Finally, considerable space and attention in the Handbook are devoted to the subjects of safety and emergency preparedness.

It is worth noting that virtually all of the chapters are written by individuals who are embedded in the industries whereof they write so knowledgeably.


James A. Kent has extensive experience as a chemical engineer and engineering educator. He most recently served as Chrysler Professor and Dean of Engineering and Science at the University of Detroit Mercy and, prior to that, he was Professor and Dean of Engineering at Michigan Technological University, and Professor of Chemical Engineering and Associate Dean for Research and Graduate Studies at West Virginia University. Dr. Kent's industry experience included assignments as Research Engineer and Research Group Leader at Dow Chemical Company and Monsanto.

Scott D. Barnicki is a chemical engineer at Eastman Chemical Company in Kingston, TN where he has spent his entire career since earning his doctorate.

Tilak V. Bommaraju has a PhD in Chemistry, and several years of industrial experience with emphasis on chlor-alkali and sodium chlorate operations, Ni, Cu and Mn electrowinning processes, and corrosion prevention. He worked at the Central Electrochemical Research Institute, India, from 1957 -1967, and then as a postdoctoral fellow at the State University of New York at Buffalo and the University of Ottawa from 1967- 1970. He joined International Nickel Company of Canada in 1970, and moved to Occidental Chemical Corporation in 1973. He founded Process Technology Optimization, Inc, in 2001, and is the co-author of 'Handbook of Chor-Alkali Technology' with Thomas F.O'Brien and Prof. Fumio Hine.

James A. Kent has extensive experience as a chemical engineer and engineering educator. He most recently served as Chrysler Professor and Dean of Engineering and Science at the University of Detroit Mercy and, prior to that, he was Professor and Dean of Engineering at Michigan Technological University, and Professor of Chemical Engineering and Associate Dean for Research and Graduate Studies at West Virginia University. Dr. Kent’s industry experience included assignments as Research Engineer and Research Group Leader at Dow Chemical Company and Monsanto. Scott D. Barnicki is a chemical engineer at Eastman Chemical Company in Kingston, TN where he has spent his entire career since earning his doctorate.Tilak V. Bommaraju has a PhD in Chemistry, and several years of industrial experience with emphasis on chlor-alkali and sodium chlorate operations, Ni, Cu and Mn electrowinning processes, and corrosion prevention. He worked at the Central Electrochemical Research Institute, India, from 1957 -1967, and then as a postdoctoral fellow at the State University of New York at Buffalo and the University of Ottawa from 1967- 1970. He joined International Nickel Company of Canada in 1970, and moved to Occidental Chemical Corporation in 1973. He founded Process Technology Optimization, Inc, in 2001, and is the co-author of “Handbook of Chor-Alkali Technology” with Thomas F.O’Brien and Prof. Fumio Hine.

In Memoriam 5
Foreword 7
Preface 9
Contents 14
What Is Industrial Chemistry 18
Section 1: Raw Materials for the Chemical Process Industries 27
Petroleum and Its Products 28
Introduction 28
What Is Petroleum? 28
Primary Energy Sources Versus Energy Vectors. 29
Petroleum Products 30
People and Petroleum: A History 30
Ancient Times 30
After the Eighteenth Century 33
Modern Petroleum Industry 38
Companies 38
Reserves 38
Consumption 39
How Long Will It Last? 39
Untapped Sources of Energy: Conservation and Production Efficiency 41
Other Fossil Hydrocarbons 42
Natural Gas and Condensate 42
Bitumen, Asphalt, Tar 42
Coal and Kerogen 42
Properties of Petroleum 43
Density, Distillation, and Elemental Composition 43
Molecular Composition 45
Paraffins 46
Hydrocarbon Ring Compounds (Naphthenes and Aromatics) 46
Heteroatom Compounds 47
Continuity Principle 48
Crude Assay 50
Origin of Petroleum 50
Petroleum System 50
Exploration 51
Drilling and Production 53
Drilling 53
Directional and Horizontal Drilling 53
Completion 54
Production 55
Well Stimulation 55
Fracking to Produce Hydrocarbons from Tight Formations 56
Heavy Oil and Bitumen Production 56
Kerogen Conversion 56
Refining 57
Refinery Configuration Overview 57
Crude Treatment, Crude Distillation, and Top-of-the Barrel Processing 57
Upgrading Residue 58
Product Blending 58
Plantwide Systems 61
The Need for Conversion 62
Petroleum Refining Chemistry 62
Olefins: Saturation and Polymerization 62
Aromatics and Naphthenes: Saturation, Dehydrogenation, and Condensation 62
Hydrodesulfurization (HDS) 64
Hydrodenitrogenation (HDN) 67
Hydrodeoxygenation (HDO) 67
Hydrodemetalation (HDM) 67
Hydrogenative Removal of Microcarbon (HDCCR) 69
Conversion 69
Chemistry of Conversion via Thermal Cracking 69
FCC Chemistry (Catalytic Cracking) 70
Hydrocracking Chemistry (Catalytic) 72
Comparison of Catalytic and Thermal Cracking 72
Alkylation Chemistry 72
Catalytic Reforming Chemistry 72
Isomerization Chemistry 74
SMR (Steam-Hydrocarbon Reforming) Chemistry 74
Acid/Base Treating 75
Claus Process Chemistry 76
Mercaptan Oxidation Chemistry 77
Catalytic NOx Removal Chemistry 77
Reaction Thermochemistry 77
Petroleum Refining Processes 77
Crude Oil Preprocessing 77
Crude Distillation 79
Solvent Refining 80
Solvent Deasphalting 80
Solvent Extraction 81
Solvent Dewaxing 81
Wax Deoiling 81
Visbreaking 81
Coking 82
Delayed Coking 82
Fluid Coking 83
Fluid Catalytic Cracking (FCC) 83
FCC Feed Pretreating 83
FCC SOx Transfer Additives 84
FCC Heat Balance 84
Residue FCC 85
FCC Gasoline Post-treating 85
Hydroprocessing 85
Hydrotreating 85
Fixed-Bed Hydrocracking 86
Ebullated Bed Hydrocracking (EBHC) 87
Slurry-Phase Hydrocracking (SPHC) 91
Catalytic Reforming 92
Isomerization 93
Alkylation 94
Modified Claus Process 94
Petroleum Refining Catalysts 95
Catalyst Manufacturing 96
Catalyst Deactivation 98
Spent Catalyst Handling 99
Petroleum Refinery Products 99
Product Specifications 99
Gasoline 100
Octane 100
Reid Vapor Pressure (RVP) 100
Gasoline Blending 100
Reformulated Gasoline (RFG) 101
Gasoline Additives 102
Ethanol in Gasoline. 102
Diesel Fuel 103
Cetane Number 103
Other Diesel Properties 104
Diesel Additives 104
Kerosene and Jet Fuel (Turbine Fuel) 104
Lube Base Stocks 106
Waxes 106
Greases 106
Asphalt 106
Road-Paving Asphalt 107
Roofing Asphalt 107
Protecting Workers 107
History 107
Modern Worker Protection Laws and Agencies 108
Material Safety Data Sheets (MSDS) 108
Protecting the Environment 109
Air Quality 109
Particulate Matter 110
Carbon Monoxide 110
Hydrogen Sulfide and Sulfur Oxides 110
Nitrogen Oxides, VOC, and Ground-Level Ozone 111
Stratospheric Ozone [69] 111
Greenhouse Gases [71, 72] 111
Global CO2 and Temperature Balances 111
Climate Change 112
Wastewater 112
Wastewater in Petroleum Processing 113
Solid Waste Handling 114
Solid Wastes in Petroleum Production and Processing 115
Recent Laws 115
Fires, Spills, and Explosions 115
Amoco Cadiz: Oil Spill 115
BP Texas City: Refinery Explosion 116
Lac-Mégantic Quebec, Canada: Oil Train Derailment [83] 116
Deepwater Horizon Drilling Rig Blowout [84] 117
Root Causes and Recommendations 118
Conclusions 118
References 119
Coal Technology for Power, Liquid Fuels, and Chemicals 122
Introduction 122
Origin and Classification of Coal 125
Coal Structure 126
Coal Composition and Analyses 129
Coal Mining and Preparation 131
Surface Mining 131
Underground Mining 132
Coal Preparation 133
Coarse-Coal Cleaning 134
Medium-Coal Cleaning 135
Fine-Coal Cleaning 135
Chemical Coal Cleaning 137
Coal Utilization 137
Environmental Concerns Related to Coal Use 137
Combustion 137
Combustion Equipment 138
Boiler Types 144
Combustion Going Forward 144
Pollution Controls 145
Pollution 146
Advances in Combustion Technology 146
Chemical Looping 147
Coke Production 148
Combustion Future 148
Nonrecovery Cokemaking 148
By-Product Coke Production 149
Mild Gasification 151
Gasification 151
Chemistry of Coal Gasification 152
Types of Coal Gasifiers 154
Gasification for Power Generation 157
Description of Selected Gasification Processes 159
Underground 166
Biomass Gasification 167
Future of Gasification 167
Coal Liquefaction 168
Pyrolysis-Based Processes 168
Factors Affecting Coal Pyrolysis 168
Utilization and Characterization of Pyrolysis Products 170
Direct Coal Liquefaction (DCL) 171
Chemistry of Direct Coal Liquefaction 172
Solvent Refined Coal (SRC-I and SRC-II) 175
Exxon Donor Solvent Process (EDS) 176
H-Coal Process 178
German IGOR Process 178
H-Tech 179
Pyrosol Process 180
British Coal Liquid Solvent Extraction 180
Two-Stage Process 181
Direct Coal Liquefaction and the Future 182
Indirect Coal Liquefaction 182
Fischer-Tropsch 183
Indirect Coal Liquefaction and the Future 186
Methanol 187
Methanol to Gasoline: The Mobil Process 187
CTL Summary 188
Petrochemical Feedstocks 189
Chemicals from Coal 190
Examples of Chemicals Production from Coal 192
References 193
Natural Gas 199
Characteristics 199
Occurrence of Natural Gas 202
Evolution of the US Natural Gas Industry 203
US Marketed Production [5-7] 205
Natural Gas Liquids 206
US Natural Gas Reserves 207
Structure of the US Natural Gas Industry 207
World Natural Gas 209
Gas-to-Liquid Technology 210
Preparing Natural Gas for Transmission and Sale 211
Processing for Liquid Recovery 215
A New Potential Source for Natural Gas 218
Methane Conversion Processes 219
Indirect Conversion via Syngas 219
Indirect Conversion via Nonsyngas Intermediates 220
Direct Methane Conversion to Hydrocarbons and Chemical Derivatives 220
Oxidative Coupling to Higher Hydrocarbons 220
Partial Oxidation to Chemical Derivatives 222
Pyrolysis or Cracking 222
Other Direct Conversion Processes 223
Methane Ammoxidation 223
Methane Reductive Nitrilization 223
A Different View of the Origins of Natural Gas 224
Natural Gas from Biological Origins 224
Natural Gas from Nonbiological Origins 225
Natural Gas Release from Lower Crust and Mantle Domains 225
Summary for Methane and Natural Gas Future Sourcing 226
References 227
Wood and Wood Products 228
Introduction 228
Chemical Composition of Wood 230
Cellulose 230
Hemicelluloses 230
Lignin 232
Extractives 232
Major Uses of Wood 233
Wood Structure 233
Wood Cells 235
Cell Wall Composite 238
Pulp and Paper Products 239
Wood Preparation 241
Mechanical Pulping 243
Semichemical pulping 245
Chemical Pulping 245
Kraft Process 246
Pre-hydrolysis Kraft (PHK) Process 251
Sulfite Process 251
Organosolv Pulping 253
Bleaching of Wood Pulp 255
Stock Preparation 256
Papermaking Process 257
Furnishing and Converting 260
Chemical Commodities Associated with Paper Industry 260
Paper and Paperboard 261
Cellulose Products 261
Products from Sulfite Pulping Liquor 261
Products from Kraft Pulping Liquor 261
Board and Structural Materials 262
Lumber 262
Laminated Timber 263
Wood-Based Composite Panels 263
Wood-Polymer or Wood-Plastic Composites (WPC) 266
Modifications of Wood 267
Wood Preservation 269
Preservative Chemicals 269
Nonconventional Wood Preservation 270
Fire-Retardant Treatment of Wood 271
Fire-Retardant Formulations 271
Conversion of Wood to Energy, Fuels, and Chemicals 272
Pretreatments of Wood 273
Direct Combustion 274
Saccharification 275
Fermentation 279
Thermal Decomposition 280
Carbonization 281
Torrefaction 282
Pyrolysis 282
Gasification 283
Liquefaction 285
Chemical Conversion 285
Chemicals from Extractives 286
Wood Resins 287
Tannins 289
Medicinal 291
Biotechnology 291
Genetic Modification of Trees 291
Enzymatic Deinking 292
Biomechanical Pulping 292
Biobleaching 292
Biofuels and Bioproducts Conversion 292
References 292
Biomass Conversion 297
An Introduction to Biomass and the Biorefinery 297
What Is Biomass? 297
The Structure and Composition of Biomass 298
Converting Biomass into Energy and Other Products 300
Biological Versus Thermochemical Processing 300
The Biorefinery 302
Biomass, Fossil Energy Savings, and Greenhouse Gas Mitigation 302
Life-Cycle Assessments of Biopower 303
Life-Cycle Assessments of Biofuels 304
Cost Projections for Fuels and Power From Biomass 305
The Competitiveness of Biopower 305
The Competitiveness of Biofuels 305
Biomass as a Sustainable and Substantial Energy Source 307
Biomass as a Substantial Source of Energy: Balancing the Demands on Our Land 307
Microbial Bioethanol Production 310
Ethanol Fermentation Schemes 310
Metabolic Pathway Engineering 312
Performance Assessment 313
Future Directions 313
Biomass Analysis and Compositional Variability 314
The Importance of Reliable Compositional Data 314
The Need for Accurate, Real-Time Biomass Analysis Methods 315
Heterogeneity and Variance in Biomass Analysis 315
Sources of Variance 316
Genetic Factors That May Contribute to Cell Wall Compositional Variability 317
Environmental Factors That May Contribute to Variance 319
Analytical Variance 319
Portfolio Methods 319
Wet Chemical Methods 320
Extractives Determination 323
Carbohydrate Determination 323
Lignin Determination 324
Protein Determination 332
Other Feedstock Constituents 333
Degradation Products 333
Reconstructing the Composition of the Original Biomass Sample 333
Rapid Analytical Methods 333
Application of Methods 335
Biomass Process Monitoring and Improvement 335
Survey of Corn Stover Compositional Diversity 335
Genetic Screening and Cell Wall Genomics 337
Future Applications 339
Summary and Conclusions 340
Biocatalysts for Biomass Deconstruction 340
Summary of Plant Cell Wall Structure 340
Enzymatic Hydrolysis of Plant Cell Wall Polysaccharides 341
Cellulases 343
Endoglucanases 344
Exoglucanases 344
Endoglucanases and beta-Glucosidases 344
Non-hydrolytic Cellulose Degrading Enzymes 347
Lytic Polysaccharide Monooxygenases (LPMO) 347
Total Cellulase Activity Measurements 348
The IUPAC Filter Paper Assay 348
General Non-IUPAC Cellulases Assays 349
Mathematical Modeling 350
Endocellulase Activity Measurement 350
Viscometric Assays 350
Exocellulase Activity Measurements 351
beta-Glucosidase Activity Measurements 351
Hemicellulases 352
General Hemicellulase Assays 352
Hemicellulose Debranching Enzymes 353
Hemicellulose Depolymerization Enzymes 354
Pectinases 356
Innovative Assays for High-Throughput Screening of Carbohydrate Active Enzymes 357
Colorimetic Assays 358
FACS-Based Assay 358
Mass Spectrometry-Based Assay 359
Microarray-Based Assay 360
Chemical Catalysis for Biomass Deconstruction 360
Introduction 360
Scope of the Review 362
Separation of Biopolymers from Biomass Raw Materials 363
Dilute Acid Pretreatments 363
Solvent Separation Processes 363
Deacetylation and Mechanical Processes 364
Steam Explosion and Related Processes 365
The Kraft Process 365
Deconstruction of Biorefinery Raw Materials and Biopolymers to Monomeric Products 366
Polymeric Carbohydrate Hydrolysis Processes 366
Carbohydrate Pyrolysis 367
Carbohydrate Oxidation 367
Carbohydrate Dehydration 368
Lignin Deconstruction 370
Conclusions 371
Thermochemical Biomass Conversion 371
Introduction 371
Pyrolysis 375
Fast Pyrolysis 376
Catalytic Fast Pyrolysis 378
Bio-Oil Upgrading 379
Slow Pyrolysis 379
Gasification 379
Gasifier Reactor Designs 380
Biomass-Gasification Product Gas 382
Syngas Cleanup and Conditioning 383
Biomass-Derived Syngas Utilization 385
Integrated Gasification Combined Cycle 386
Fuel Cell Applications 386
Syngas to Liquid Fuels 387
Combustion 388
Co-Firing 390
References 392
Section 2: Industrial Organic Chemistry 432
Synthetic Organic Chemicals 433
Introduction 434
Chapter Background 434
Chapter Organization 435
Chemical Raw Materials and Feedstocks 437
Background 437
C2-C3 Light Olefins [21-25] 439
C6-C8 Aromatics: BTX [38-42] 446
C4 Hydrocarbons: Butanes, Butenes, Butadiene [55-59] 448
C9-C17 Paraffins [67-69] 452
Synthesis Gas [70-78] 452
Minor Feedstocks: Methane and Acetylene 459
Downstream Derivatives 460
Manipulation of Hydrocarbons: Oligomerization, Metathesis, Alkylation 460
Oligomerization 460
Linear ?-Olefins [82-85] 460
Metathesis [86] 461
Alkylation [93, 94] 465
Chemistry 465
Ethylbenzene [95-99] 466
Cumene and Diisopropylbenzene [100-104] 467
Higher Alkylbenzenes [105-108] 468
Oxidation 468
Chemistry [109-116] 468
Homogeneous Aromatic Oxidations 469
Terephthalic, Isophthalic, Trimellitic Acids [125-127] 469
Benzoic Acid [129, 130] 473
Phthalic Anhydride [131-134] 473
Peroxidations of Secondary or Tert-Alkyl Benzene Derivatives 474
Phenol/Acetone or MEK and Hydroquinone/Acetone [136-141] 474
Hydroperoxide Coproduct Processes for Propylene Oxide 476
Styrene/Propylene Oxide Coproduction [143] 476
Tert-Butanol/Propylene Oxide Coproduction [144] 477
Ethylene Oxide [145-150] 477
Wacker Oxidation: Acetaldehyde [155-159] 478
Acrolein/Acrylic Acid and Methacrolein/Methacrylic Acid [163-166] 481
KA Oil: Cyclohexanone/Cyclohexanol [167-169] 482
Maleic Anhydride [170-173] 483
Formaldehyde [175-180] 483
Esters via Oxidative Acetylation of Olefins, VAM [183-187] 484
Oxidation of Aldehydes to Acids [188] 485
Carbonylation 487
Chemistry 487
Acetic Acid [189-194] 487
Acetic Anhydride [195-197] 489
Methyl Formate [198] 490
Methyl Propionate [200-202] 491
Koch Acids 492
Hydroformylation [203-208] 492
Chemistry 492
Lower C2-C5 Olefins 496
Higher Oxo: Detergent Alcohols [212] 497
Chlorination [213, 214] 497
Chemistry 497
Chloromethanes [217-219] 500
Chloroaromatics [220-222] 501
1,2-Dichloroethane (Ethylene Dichloride) and Vinyl Chloride Monomer (VCM) [223-226] 501
Chloroethanes [227-229] 503
Propylene Oxide via Propylene Chlorohydrin [230, 231] 504
Epichlorohydrin [233, 234] 504
Condensation 505
Aldol Condensation [235-237] 505
Chemistry 505
MIBK, Diacetone Alcohol (DAA), and Mesityl Oxide (MO) [238-240] 507
Neopentyl Polyhydric Alcohols [241, 242] 508
2-Ethylhexanal [243, 244] 509
Tishchenko Reactions: Ethyl Acetate and 2,2,4-Trimethyl-1,3-Pentanediol Derivatives [245-247] 509
Mannich Base Condensation: Methacrolein [248, 249] 510
Condensation of Formaldehyde with Acetylene: 1,4-Butanediol [250, 251] 511
Bis-Hydroxyaryl Alkanes: Bisphenol a [252-254] 511
Hydration/Hydrolysis/Dehydration/Alcoholysis 512
Hydration of Olefins: Ethanol, Isopropanol, Sec-Butanol, Tert-Butanol [255-259] 512
Hydrolysis of Epoxides and Carbonates: Ethylene Glycol, Propylene Glycol, and Higher Analogues [261, 262] 513
Alcoholysis of Epoxides: Glymes and Ether Alcohols [263-267] 514
Dehydration of Acetic Acid: Ketene [195, 268-271] 514
Esterification and Related Reactions [273-277] 516
Chemistry 516
Low-Boiling Esters 516
High-Boiling Esters 518
Methyl Acetate [280] 519
Plasticizer Esters 519
Esterifications with Anhydrides 519
Hydrogenation [282-285] 520
Chemistry 520
Methanol [287-291] 521
Aromatic Ring Saturation: Cyclohexane [292-294] 522
?,beta-Unsaturated Carbonyls to Saturated Ketones and Aldehydes [295, 296] 523
Aldehydes and Ketones to Alcohols [297, 298] 523
Esters to Alcohols: Dimethyl Maleate to gamma-Butyrolactone, THF, and 1,4-Butanediol [300-303] 524
Esters to Alcohols: Dimethyl Terephthalate to 1,4-Cyclohexanedimethanol [304] 525
Dehydrogenation [305-307] 525
Chemistry 525
Butenes and 1,3-Butadiene [310-312] 526
Internal Olefins from Higher n-Alkanes [313, 314] 527
Styrene from Ethylbenzene [315-318] 528
Dehydrogenation of Alcohols: MEK, Acetone, and Formaldehyde [319-323] 529
References 530
Chemistry in the Pharmaceutical Industry 541
Introduction 542
Medicinal Chemistry 543
Research Strategies 545
Pharmacodynamics 546
Pharmacokinetics and Toxicity 547
Drug Delivery 548
Patents 548
Clinical Trials 549
Summary 550
Cardiovascular Agents 551
Congestive Heart Failure, Migraine, and Antithrombotic Agents 552
Metabolic Agents 553
Hyperlipidemia 553
Diabetes 554
Obesity 556
Gastrointestinal and Genitourinary Agents 557
Antisecretory 557
Benign Prostatic Hyperplasia and Urinary Urge Incontinence 558
Erectile Dysfunction 559
Pulmonary Agents 559
Asthma and Allergic Rhinitis 559
Idiopathic Pulmonary Fibrosis 560
Cystic Fibrosis 561
Inflammation and Osteoporosis 562
Arthritis 562
Osteoporosis 562
Central Nervous System Agents 563
Antidepressants 563
Anxiolytics 563
Bipolar Disorders, Schizophrenia, and Epilepsy 564
Alzheimer´s Disease 564
Smoking Cessation and Insomnia 565
Infectious Diseases 565
Antibacterial Agents 565
Antifungal Agents 567
Antiviral Agents 568
Antineoplastic Agents 571
Miscellaneous Agents 573
Glaucoma and Nausea 573
Analgesics 574
Biologics 574
Drug Discovery Strategies and Technologies 575
Fragment-Based Drug Design 575
Small-Molecule High-Throughput Synthesis 575
Discovery Libraries 575
Targeted Libraries 577
Optimization Libraries 578
Target Screening of Virtual Libraries 579
Chemical Process RandD in the Pharmaceutical Industry 579
Introduction 579
Challenges 579
Patient Safety 579
Process Safety: Exposure 580
Process Safety: Thermochemistry 580
Form and Powder Properties 581
Process Greenness 581
Scale-Up Versus the Lab 581
Analytical and In-Process Controls 582
Teamwork 582
Development Tools 583
Robustness 583
Evolving Process Requirements 584
An Example of Small-Molecule Process Development 585
Conclusion 588
References 589
Manufacture of Dye Intermediates, Dyes, and Their Industrial Applications 590
Introduction 590
Manufacture of Dye Intermediates 590
Mechanism of Electrophilic Reagents 591
Mechanism of Nucleophilic Reagents 591
Orientation Rules and Effects 591
Orientations in the Benzene Nucleus 592
Orientations in the Naphthalene Nucleus 592
Orientations in the Anthraquinone Nucleus 592
Fundamental Processes in Dye Chemistry 593
Sulfonation 593
Sulfonation of Benzene 593
Sulfonation of Toluene 593
Sulfonation of Aniline 594
Sulfonation of Naphthalene 594
Sulfonation of beta-Naphthol 594
Sulfonation of Anthraquinone 594
Nitration 596
Nitration of Benzene 596
Nitration of Toluene 596
Nitration of Phenol 596
Nitration of Naphthalene 597
Nitration of 1-Naphthol and 2-Naphthol 597
Nitration of 1-Naphthylamine and 2-Naphthylamine 599
Nitration of Anthraquinone 599
Reduction 599
Reduction of Nitrobenzene 600
Reduction of o-Nitroaniline 600
Reduction of o-Nitrophenol 600
Reduction of 1-Nitronaphthalene 600
Reduction of 1-Phenylazo-2-naphthol and Methyl Orange 600
Reduction of 1-Nitroanthraquinone 600
Amination 601
Amination of Chlorobenzene 601
Amination of 2-Naphthol 602
Amination of Anthraquinone-1-sulfonic acid, Anthraquinone-2-sulfonic acid, 2-Chloroanthraquinone and 2,3-Dichloroanthraquinone 602
Hydroxylation 603
Hydroxylation of Benzenesulfonic acid and Naphthalene-2-sulfonic acid 603
Hydroxylation of Anthraquinone-2-sulfonic acid 603
Hydroxylation of 1-Chloro-4-nitrobenzene and 1-Chloro-2,4-dinitrobenzene 603
Hydroxylation of m-Nitroaniline 604
Hydroxylation of 1-Naphthylamine and 2-Naphthylamine 604
Oxidation 605
Oxidation of 4-Nitrotoluene and 2-Chlorotoluene 605
Oxidation of 2-Methylnaphthalene 606
Oxidation of Naphthalene and Anthracene 606
Halogenation 606
Chlorination of Toluene 606
Bromination of Benzene 606
Chlorination of Naphthalene 606
Bromination of Naphthalene 607
Chlorination of Anthraquinone, 2-Methylanthraquinone, and Bromination of 1-Aminoanthraquinone 607
Diazotization and Coupling 607
Direct Diazotization 609
Inverted or Indirect Diazotization 609
Diazotization of Weakly Basic Amines 609
Diazotization in Organic Solvents 609
Aromatic Diazo Components 609
Heterocyclic Diazo Components 610
Coupling 611
Aromatic Hydroxy Compounds 612
Aromatic Amines 613
Aromatic Aminophenols, Aminophenolsulfonic Acids, Aminonaphtholsulfonic Acids 614
Aromatic N,N-Dialkylsubstituted Aryl Amines 614
Compounds with Reactive Methylene Group 615
Heterocyclic Coupling Components 615
Replacement of Diazo Group by Other Groups 616
Dyeing 616
Synthetic Dyes 618
Development of US Dyestuff Industry 618
Textile Fibers 621
Natural Fibers 621
Regenerated Fibers 622
Synthetic Fibers 622
Classification of Dyes 623
Acid Dyes 624
Acid Monoazo Dyes 624
Acid Disazo Dyes 629
Acid Anthraquinone Dyes 630
Basic Dyes 632
Localized or Pendant Cationic (Basic) Dyes 632
Delocalized Cationic (Basic) Dyes 633
Direct Dyes 634
Direct Monoazo Dyes 634
Direct Disazo Dyes 635
Direct Trisazo Dyes 636
Direct Triazinyl Dyes 637
Disperse Dyes 637
Disperse Azo Dyes 638
Disperse Monoazo Dyes 638
Disperse Disazo Dyes 640
Disperse Quinophthalone Dyes 641
Disperse Nitro Dyes 641
Disperse Anthraquinone Dyes 642
Disperse Anthraquinone Dyes for Polyester Fibers 642
Disperse Anthraquinone Dyes for Cellulose Esters and Synthetic Polyamide Fibers 643
Reactive Dyes 644
Reactive Azo Dyes 645
Reactive Metal Complex Azo Dyes 646
Reactive Anthraquinone Dyes 647
Solvent Dyes 648
Solvent Azo Dyes 648
Solvent Anthraquinone Dyes 649
Sulfur Dyes 650
Vat Dyes 651
Vat Indigoid Dyes 652
Vat Anthraquinonoid Dyes 652
Manufacture of Dyes 654
Acid dyes 655
Synthesis of C.I. Acid Yellow 76 655
Synthesis of C.I. Acid Blue 129 655
Synthesis of C.I. Acid Green 25 655
Basic Dyes 655
Synthesis of C.I. Basic Yellow 11 655
Synthesis of C.I. Basic Red 14 655
Synthesis of C.I. Basic Blue 3 656
Synthesis of C.I. Basic Blue 22 656
Direct Dyes 657
Synthesis of C.I. Direct Red 16 657
Synthesis of C.I. Direct Blue 67 657
Synthesis of C.I. Direct Green 13 657
Disperse Dyes 659
Synthesis of C.I. Disperse Blue 284 and C.I. Disperse Green 9 659
Synthesis of C.I. Disperse Yellow 33 659
Synthesis of C.I. Disperse Yellow 42 659
Synthesis of C.I. Disperse Blue 60 660
Reactive Dyes 660
Synthesis of C.I. Reactive Yellow 4 660
Synthesis of C.I. Reactive Orange 1 660
Vat Dyes 661
Synthesis of Indigo (C.I. Vat Blue 1) 662
Synthesis of Indigo (C.I. Vat Blue 1) 662
Synthesis of C.I. Vat Yellow 4 and C.I. Vat Orange 1 662
Synthesis of Violanthrone (C.I. Vat Blue 20) and C.I. Vat Green 1 663
Production and Sales 663
Industrial Applications of Dyes 666
Textile Applications of Dyes 666
Fiber Preparation 667
Dye Bath Preparation 667
Finishing 668
Dyeing Methods/Batch 670
Printing 672
Pigment Dyeing and Printing 672
Non-textile Applications of Dyes 673
Dyes as Acid-Base Indicators (pH Indicators) 673
Synthesis of Phthalein Dyes/Indicators 674
Liquid Crystal Dyes 674
Color Filter Dyes for Displays and Sensors 675
Ink-Jet Dyes 677
Continuous Ink-Jet Technology 677
Drop-on-Demand Ink-Jet Technology 677
Infrared Absorbing Dyes 678
Laser Dyes 680
Photographic Dyes 680
Hair Dyes 682
Food Dyes 683
Biomedical Dyes 684
References 684
The Chemistry of Structural Adhesives: Epoxy, Urethane, and Acrylic Adhesives 686
Introduction 686
Adhesion 687
Curing 688
Adhesion Mechanisms 688
Surfaces 689
Epoxy Structural Adhesives 690
Introduction 690
Commercial Epoxy Resins 691
Epoxy Cure Chemistry 695
Evolution 701
Summary 701
Urethane Structural Adhesives 701
Introduction 701
Isocyanate Preparation 702
Isocyanate Reactions 702
Important Isocyanates 705
Blocked Isocyanates 707
Evolution 707
Summary 708
Acrylic Structural Adhesives 708
Introduction 708
Acrylic Monomers 708
Curing 709
Formulation 711
Summary 713
Hybrid Adhesives 713
Evolution 714
Conclusion 714
References 715
The Agrochemical Industry 718
Introduction 718
Classification of Pesticides 720
Insecticides 720
Classification Based on Mode of Entry 721
Classification Based on Chemical Class and Mode of Action 721
Herbicides 721
Classification Based on Mode of Entry 721
Classification Based on Application and Crop Selectivity 725
Classification Based on Chemical Class and Mode of Action 725
Fungicides 725
Classification Based on Mode of Entry 729
Classification Based on Chemical Class and Mode of Action 729
Pesticide Classification Based on Toxicity 733
Chemistry of Pesticides 734
Rationale of Design 734
Importance of Physico-chemical Properties 734
Structural Features 735
Geometric and Optical Isomers 735
Bioisosterism 736
Synthesis of Pesticides 737
Pesticide Formulation 738
Nanoformulation 738
Role of Adjuvants in Formulations 739
Formulation Types and Their Codes [12] 739
Adjuvant Types with Terms and Definitions 739
Challenges and Way Forward for Pesticide Industry 741
Resistance to Pesticides 741
Spurious Pesticides 746
Safe Use of Pesticides 746
Increasing Development and Registration Cost 747
Registration of Pesticides and Need for Harmonization 747
Entry of Biotechnology/Transgenic Crops 748
Delivery Systems and Application Technology 749
Cleaner Technology and Products 749
Seed Treatments 750
Summary 750
Appendix 1: Products Launched After 2000 and Becoming Off Patent Post 2015 751
Appendix 2: Regulatory Authorities and Legislation of Some Countries 764
References 765
Fertilizers and Food Production 766
Introduction 767
Overview of the Fertilizer Industry 771
Raw Materials for Fertilizer Production 772
Nitrogen Fertilizers 774
Natural Organics 774
Nitrogen Fertilizers from Synthetic Ammonia 775
Miscellaneous Low-Volume Nitrogen Fertilizers 779
Phosphate Fertilizers 779
Natural Organic Phosphate Fertilizers 780
Fertilizers from Mineral Phosphates 780
Miscellaneous Low-Volume Phosphate Fertilizers 788
Potassium Salts 790
Potassium Minerals 791
Potassium-Magnesium Minerals 792
Potassium Sulfate 792
Potassium Nitrate 792
Potassium Phosphates 793
Compound Fertilizers 793
Nongranular Mixtures 794
Compound Granulars 795
Bulk Blends 799
Fluid Mixtures 801
Controlled-Release Fertilizers 806
Physical Quality of Fertilizers 811
Next Generation of Fertilizers 811
References 812
Pigments, Paints, Polymer Coatings, Lacquers, and Printing Inks 814
Introduction 814
VOC Regulations 816
West 816
Southwest 817
Midwest 817
East 818
Hazardous Waste Regulations 818
Technical Trends in Coatings 819
Powder Coatings 820
Electron-Beam (EB) and Ultraviolet (UV) Curable Coatings 821
Current Automotive Coating Trends 821
Coatings for Plastics 822
New Cross-Linking Technologies 823
Bio-Based Resins 823
Printing Inks 824
Pigments 826
Inorganic Pigments 826
Organic Pigments 828
Pearlescent Pigments 829
Aluminum Pigments 830
Lacquers 830
References 831
Animal and Vegetable Fats, Oils, and Waxes 832
Biotechnology in Agriculture and Processing 832
Human Survival Is Biotechnology 832
Genetic Messages 834
Water Activity 835
Herbicide- and Insect-Resistant Oilseed Crops 836
New Generation Biotech Traits 838
Concerns About Transgenic Crops 838
Drivers and Tools for the Future 841
Biotechnology Practices in Soybean Production and Processing 842
Introduction to Lipids 843
Recent Fats and Oils Industry Changes 844
AOCS, an Information Source 844
Nutrition and Health Implications 845
Nomenclature and Molecular Structures 846
General 846
Fatty Acids 846
Triacylglycerols 852
Oxidation 853
Biohydrogenation and Conjugated Linoleic Acids 854
Fatty Acid and Triacylglycerol Melting Characteristics 855
Polymorphism and Crystal Types 856
Other Lipids 858
Waxes 858
Terpenes 859
Sterols 860
Fat-Soluble Vitamins 862
Phosphatides 863
Fats and Oils Sources and Consumption 864
Production 864
Changes in Sources 865
Consumption 867
Extraction of Fats and Oils 868
Basic Processes 868
Screw Press Operations 868
Decanters and Centrifuges 869
Olive Oil 870
Coconut Oil 870
Palm Oil 871
Animal Fats and Fish Oils 873
Extraction of Lards and Tallows 873
Inedible Animal Products 874
Restaurant Greases 874
Animal Fat Specifications, Production, and Utilization 874
Fish Oils 875
Feeding Animal and Marine Fats 875
Row Crop Oilseeds Processing 877
Extraction Plants 877
Seed Preparation for Extraction 878
Solvent Extractors 882
Solvents 882
Desolventizing-Toasting 886
Miscella Refining 886
Refining of Vegetable Fats and Oils 887
Oil Receiving and Handling 887
Phosphatides Degumming and Lecithin Uses 888
Alkali Neutralization 891
Silica Gel Adsorption 893
Bleaching 893
Nano Neutralization Technology: Vegetable Oil Processing 894
Oils and Fats Modification 895
Solid Fat Index/Solid Fat Content 895
Thermal Fractionation 897
Hydrogenation 899
Interesterification 901
Deodorization/Physical Refining 906
Notes on Major Row Crop Oilseeds 909
Soybean 909
Cottonseed 910
Rapeseed/Canola 910
Sunflower Seed 911
Peanut 911
Trans Fats Nutritional Labeling 912
Edible Uses of Fats and Oils 914
Antioxidants 914
Nonionic Surfactants and Emulsifiers 916
Table Oils 916
Frying Oils 917
Specialty Oils 920
Margarines and Spreads 921
Shortenings 923
Other Edible Applications 925
Industrial Uses of Fats and Oils 925
Timeline 925
Chemurgy Revisited 926
Industrial Oils Utilization 928
Fatty Acid Methyl Esters, Biodiesel 928
Other Industrial Applications 932
Analytical Methods 932
References 935
Sugar and Other Sweeteners 942
Introduction 943
Sugar Manufacture 944
History [9] 944
Raw Sugar Production from Sugarcane 944
Crystal Quality 957
Bagasse 958
Direct Consumption Sugar at a Sugarcane Factory 959
Edible Products from the Sugarcane Factory 959
New Technology 959
Cane Sugar Refining 960
Affination and Melting 960
Purification 961
Decolorization 962
Crystallization 964
Remelt Sugar 965
Packaging and Storing Refined Granulated Sugar 965
Specialty Sugars 966
Beet Sugar 968
Agriculture 968
Harvesting and Beet Handling 968
Extraction of the Juice 969
Juice Purification 969
Evaporation and Standard Liquor 970
Extending the Processing Cycle 971
Thick Juice Storage 971
Crystallization, Centrifuging, and Drying 971
Molasses Desugarization 971
Sugar Recovery from Beet Molasses 971
Desugarization of Cane Molasses 972
Process Control and Instrumentation 972
Cane and Beet Sugar Production 973
Sugar Consumption and Usage 974
Derivatives of Sucrose: Sucrochemistry 974
Sweeteners Derived from Starch 975
Starch Conversion 975
Acid Hydrolysis of Starch 976
Acid-Enzyme Hydrolysis 977
Enzyme-Enzyme Hydrolysis 977
Crystalline Dextrose 977
Crystalline Fructose 977
High Fructose Corn Syrup 978
Molasses 978
Other Sweeteners 979
Other Natural Sweeteners 980
Regulation and Trade in Sugar 981
Environmental Concerns and Sustainability 982
Issues of Genetic Engineering 982
References 983
Soap, Fatty Acids, and Synthetic Detergents 988
Soap and Fatty Acids 989
Introduction 989
Chemistry 989
Manufacturing Technology 990
Raw Materials 991
Functional Properties of Soap 992
Manufacturing Processes 993
Saponification Reactor 994
Cooling 995
Soap Separator 996
Soap Extraction 997
Centrifugation 999
Neutralization 999
Direct Neutralization 1002
Carbonate Neutralization 1003
Partial Neutralizing with Soda Ash 1004
Carbon Dioxide Separation 1004
Raw Material Dosing, Caustic Soda Neutralizing 1004
Completion of Neutralizing with Caustic Soda 1005
Neutralization Soap Viscosity 1005
Fatty Acids 1006
Fractionation and Physical Separation 1006
Fat Refining 1007
Fat Splitting Processes 1007
Fatty Acid Distillation 1011
Special Separation Methods 1014
Synthetic Detergents 1015
Characteristic Features of Surfactants 1016
Raw Materials for Surfactant Production 1018
Intermediates for Surfactant Production 1019
World Surfactant Consumption 1023
Anionic Surfactants 1024
Nonionic Surfactants 1029
Amphoteric Surfactants 1031
Cationic Surfactants 1032
Detergent Additives 1032
Production of Synthetic Detergents 1035
Agglomeration 1037
Liquid Detergent Processing 1038
Detergent Trends 1040
References 1040
Chemical Explosives 1042
Introduction 1042
Commercial Explosives Market 1043
Safety and Regulatory 1043
Delivery Systems 1044
Chemistry of Combustion and Explosion 1045
Historical Development 1048
Classification of Explosives 1049
Structural Characteristics of Explosives 1050
Explosives Manufacturing and Use 1053
TNT 1053
RDX and HMX 1054
HNS (2,2,4,4,6,6-Hexanitrostilbene) 1054
TATB (1,3,5-Triamino-2,4,6-Trinitrobenzene) 1055
DDNP 1055
PETN 1055
NG (Nitroglycerin or Glyercol Trinitrate) 1056
Packaged Explosives 1056
Dynamite 1056
Packaged Emulsions 1057
Bulk Explosives 1058
Ammonium Nitrate and ANFO 1058
Bulk Emulsions 1060
Underground Bulk Emulsions 1062
Surface Bulk Emulsions 1063
Initiation Systems 1065
History of Initiation Systems 1065
Boosters 1066
Non-electric Initiation 1067
Electronic Detonators 1067
Explosives in Extreme Environments 1069
Explosives in Frigid Arctic Conditions 1069
Explosives in Geothermal Environments 1069
High Borehole Pressures 1070
Summary 1070
References 1071
The Nuclear Industry 1072
Introduction 1072
Status and Outlook 1074
Nuclear Safety 1078
The Earth´s Energy Supply and Use 1081
Nuclear Processes 1084
Radioactive Decay 1084
Fission 1085
Fusion 1087
Deuterium-Tritium Fusion 1088
Nuclide Production 1089
Fission Products 1090
Neutron Transmutation Products 1091
Neutron Activation Products 1092
Charged Particle Transmutation Products 1092
Reactor Materials Processing 1093
Isotope Enrichment 1094
Zirconium Production 1096
The Uranium Fuel Cycle 1098
Mining 1098
Milling 1098
Fuel Preparation 1100
Spent Fuel Reprocessing 1106
Radioactive Waste Management 1110
Liquid Waste Treatment 1112
Airborne Waste Treatment 1112
Solid Waste Treatment 1113
Storage of Spent Fuel 1114
Low-Level Waste Disposal 1115
Transportation of Nuclear Materials 1115
The Nuclear Reactor 1116
Light Water Reactors 1118
CANDU Heavy Water Reactor 1122
Liquid Metal (Sodium) Fast Breeder Reactor (LMFBR) 1122
Other Nuclear Reactors 1123
Radiation Processing 1124
Radioisotope Applications 1125
Radiation Sources 1125
Radioisotope Thermoelectric Generators 1126
Tracers 1126
Nuclear Medicine 1126
References 1128
Status and Outlook 1128
Nuclear Safety 1128
The Earth´s Energy Supply and Demand 1128
Nuclear Processes 1129
Fission 1129
Fusion 1129
Nuclide Production 1129
Neutron Transmutation Products 1129
Charged Particle Transmutation Products 1129
Isotope Enrichment 1129
The Uranium Fuel Cycle 1129
Fuel Preparation 1129
Spent Fuel Reprocessing 1129
Radioactive Waste Management 1130
Liquid Waste Treatment 1130
Storage of Spent Fuel 1130
Low-Level Waste Disposal 1130
Transportation of Nuclear Materials 1130
The Nuclear Reactor 1130
Light Water Reactors 1130
CANDU Heavy Water Reactor 1130
Liquid Metal (Sodium) Fast Breeder Reactor (LMFBR) 1130
Other Nuclear Reactors 1130
Radiation Processing 1131
Radioisotope Application 1131
Radiation Sources 1131
Radioisotope Thermoelectric Generators 1131
Nuclear Medicine 1131
Section 3: Industrial Inorganic Chemistry 1132
Synthetic Nitrogen Products 1133
Nitrogen 1133
Characteristics 1133
Nitrogen Production Processes 1135
Nitrogen Fixation 1135
Nitrogen Oxides 1135
Ammonia 1136
Nitrogen Consumption 1137
Environmental Issues 1139
Ammonia Production 1141
Hydrogen Production 1144
Manufacturing Processes 1146
Feed Pretreatment 1148
Prereformer 1148
Reformers 1148
Reformer Catalysts 1148
Reformer Materials of Construction 1149
Waste Heat Recovery 1150
Hydrogen Production Costs and Capital Costs 1150
Other Reforming Processes 1150
Reliability and Revamps 1150
Technology Suppliers 1153
Partial Oxidation Processes 1155
Technology Suppliers 1155
Initial Purification of Synthesis Gas 1158
Alkazid Process 1161
aMDEA Process 1161
Benfield Process 1161
Catacarb Process 1161
Fluor Solvent Process 1162
Giammarco-Vetrocoke Process 1162
HiPure Process 1162
Purisol Process 1162
Rectisol Process 1162
Selexol Process 1162
Shell Sulfinol Process 1162
Pressure Washing with Monoethanolamine (MEA) 1162
Retrofits of CO2 Removal System 1163
Final Purification of Synthesis Gas 1163
Compression 1164
Ammonia Synthesis 1164
Reaction Rate 1165
Catalysts 1165
Energy Efficiency 1167
Ammonia Plant Design 1168
Ammonia Separation 1168
Ammonia Synthesis 1169
Large-Capacity Ammonia Plants 1169
Ammonia Production Costs 1169
Uses of Ammonia 1170
Chemical Production and Other Uses 1170
Distribution and Storage 1172
Ammonia Toxicity 1172
Ammonia Quality 1172
Distribution and Storage 1173
Ammonia Price 1173
Nitric Acid 1174
Physical Properties 1174
Processes 1174
Uses of Nitric Acid 1182
Ammonium Nitrate 1183
Processes 1183
Production 1185
Urea 1185
Processes 1187
Production 1188
Storage and Distribution 1188
Uses 1189
Melamine 1189
Processes 1189
Production 1190
Uses 1190
Aliphatic Amines 1192
Methylamines 1192
Other Alkylamines 1194
Production 1195
Uses 1195
Ethanolamines and Secondary Products 1195
Ethanolamine Process 1196
Secondary Products of Ethanolamine 1197
Ethylenediamine Production 1198
Ethylenediamine Uses 1199
Hexamethylenetetramine (Hexamine) 1199
Hexamine Processes 1199
Hydrazine 1199
Processes 1200
Hydrogen Cyanide 1203
Safety 1203
Manufacture 1205
Production 1209
Uses 1209
Aniline 1210
Processes 1210
Other Compounds 1212
References 1214
Phosphorus and Phosphates 1219
Introduction 1219
Phosphate Rock 1220
Minerals 1221
Francolite 1222
Resources and Ores 1222
Mining 1223
Beneficiation 1225
Production and Value 1228
Chemical Processing of Phosphate Rock 1230
Thermal Process for Phosphorus and Phosphoric Acid 1230
Industrial Phosphates 1231
Wet Process Phosphoric Acid 1232
Dihydrate Process 1233
Major Dihydrate Processes 1235
Hemihydrate Processes for Phosphoric Acid 1237
Unit Operations 1239
Superphosphoric Acid 1241
Wet Process Acid By-products 1242
Phosphogypsum 1242
Fluorine Recovery 1243
Uranium Recovery from Wet Process Phosphoric Acid 1243
Recovery of Rare Earth Elements (REE) from Wet Process Phosphoric Acid 1244
Animal Feed Supplements 1244
Purified Phosphoric Acid 1244
Environmental Aspects 1245
References 1246
Sulfur and Sulfuric Acid 1248
Sulfur 1248
Transportation and Storage 1249
Solidification and Melting 1251
Development of the Sulfur Industry 1252
Sulfur Production Processes 1255
Recovered Sulfur 1256
Production and Consumption of Sulfur 1257
Sulfuric Acid 1260
Uses of Sulfuric Acid 1261
Development of the Sulfuric Acid Industry 1262
Manufacture of Sulfuric Acid by the Contact Process 1264
Sulfur Dioxide Production 1264
Single Versus Double Contact Process 1267
Oxidation of SO2 1268
Absorption of SO3 1268
Acid Cooling 1268
Other Modifications to the Sulfuric Process [45] 1269
Other Sources of Sulfuric Acid 1270
Production and Consumption of Sulfuric Acid 1270
References 1272
Salt, Chlor-Alkali, and Related Heavy Chemicals 1274
Sodium Chloride 1274
Sodium Carbonate (Soda Ash) 1278
Sodium Bicarbonate 1281
Sodium Sulfate 1282
Other Sulfur Compounds 1284
Sodium Sulfides 1284
Sodium Thiosulfate 1285
Sodium Sulfite 1285
Sodium Bisulfite 1285
Sodium Hydrosulfite (Sodium Dithionite) 1286
Sodium Silicates 1286
Chlor-Alkali (Chlorine and Caustic Soda) 1288
Hydrochloric Acid 1299
Bromine and Sodium Bromide 1301
Bleaches and Disinfectants 1302
Sodium Chlorate 1304
References 1305
Industrial Gases 1308
Overview 1308
Nitrogen 1313
Oxygen 1314
Argon 1315
Hydrogen 1315
Helium 1322
Carbon Dioxide 1323
Liquefied Natural Gas 1326
Acetylene 1326
Nitrous Oxide 1328
References 1328
Section 4: Polymer Chemistry 1330
Manufactured Textile Fibers 1331
Textile Background 1332
History 1333
Fiber Consumption 1335
Rayon 1339
Chemical Manufacture 1339
Wet Spinning 1342
Cuprammonium, Nitrocellulose, and Cellulose Acetate Processes for Rayon 1345
Cuprammonium Cellulose 1345
Nitrocellulose and Cellulose Acetate 1345
Textile Operations 1345
Spun Yarn 1346
Modified Viscose Rayon Fibers 1347
High-Wet-Modulus Rayon 1347
High Absorbency Rayons 1348
Other New Developments 1349
Environmentally Friendly High Wet Strength Rayon: Lyocell 1349
Cellulose Acetate 1349
Historical 1349
Manufacture of Cellulose Secondary Acetate 1350
Manufacture of Cellulose Triacetate 1352
Acid Recovery 1352
Blending of Flake 1352
Spinning Cellulose Acetate 1353
Solvent Recovery 1355
Dope-Dying 1355
Protein Fibers 1355
Nylon 1355
Historical 1355
Manufacture 1356
Nylon 66 1356
Nylon 6 1357
Melt Spinning 1358
Drawing 1358
Other Nylons, Modifications, and New Developments 1360
Polyesters 1361
Historical 1361
Manufacture 1361
Drawing 1363
Heat Setting 1363
Textured Yarns 1364
Staple Process 1366
Continuous Filament Yarn Process Variants 1366
Modifications and New Developments 1367
Acrylics 1368
Polymer Manufacture 1368
Spinning 1369
Bicomponent or Conjugate Spun Fibers 1371
Vinyl and Modacrylic Fibers 1372
Vinyls 1372
Modacrylics 1373
Elastomeric Fibers 1374
Polyolefin Fibers 1375
Polypropylene 1375
Synthesis 1377
Production 1378
High Molecular Weight Polyethylene 1380
Routes to High Performance 1380
Gel Spinning 1381
Production 1381
Aramids 1382
Introduction 1382
Manufacture 1382
High Temperature Resistant Fibers 1385
Meta-Aramid 1385
PBI 1385
Polytetrafluoroethylene 1386
Historical 1386
Polymer Synthesis 1386
Fiber Manufacture 1387
Properties 1387
Expanded PTFE (ePTFE) 1388
Glass and Carbon Fibers 1388
Glass 1388
Carbon and Graphite Fibers 1390
Sulfar 1391
Historical 1391
Manufacture 1391
Microdenier and Nano Fibers 1392
Nanofibers 1393
Fiber Variants 1394
Introduction 1394
Physical Variants 1394
Chemical Variants 1396
Polymers, Fibers, and Textiles in Medicine 1398
Introduction 1398
Examples of Medical Products and Fibers Used to Produce Them 1398
Special Fibers Developed Primarily for Use in Medicine 1399
Assembly Structures Used in Implants 1400
References 1400
Suggested Reading 1401
Synthetic Resins and Plastics 1403
Introduction 1403
Definition 1403
History 1403
Advantages of Plastics Over Conventional Materials 1404
Markets for Plastics 1404
Major Classes of Plastic Materials 1405
Part I: Polymer Chemistry 1405
Molecular Weight 1405
Chain Structure 1406
Chemical Structure 1407
Morphology 1407
Transition Temperatures 1409
Glass Transition Temperature (Tg) 1409
Crystallization and Melting Points (Tm) 1410
Polymerization 1411
Step Reaction Polymerization 1411
Chain Reaction Polymerization 1411
Coordination Polymerization 1414
Polymerization Methods 1414
Bulk Polymerization 1415
Solution Polymerization 1415
Suspension Polymerization 1416
Emulsion Polymerization 1416
Copolymerization 1417
Random Copolymerization 1417
Block and Graft Copolymers 1418
Mechanical Properties 1419
Viscoelasticity 1419
Failure Behavior 1420
Part II: Commercial Plastic Materials 1422
Classes of Families of Commercial Plastics 1422
Commodity Thermoplastics 1422
Engineering and Specialty Thermoplastics 1428
Biopolymers 1434
Thermoplastic Elastomers 1436
Thermoset Plastics 1437
General Considerations 1440
Structure-Property Relationships 1440
Additives 1441
Critical Properties: Challenges to the Plastics Industry 1443
Fire Performance 1444
Health and Environment 1444
Recycling 1444
Part III: Plastic Processing 1445
Rheology 1445
Fundamental Concepts 1445
Instrumental Measurement of Flow Properties 1446
Practical Aspects of Polymer Rheology 1446
Drying 1447
Extrusion 1447
Basic Functions 1447
Major Processes and Products 1449
Injection Molding 1450
Introduction 1450
Injection Molding Cycle 1450
Variations and Details 1451
Reaction Injection Molding 1452
Overview 1452
Ingredients 1452
Equipment and Process 1453
Structural Foam 1453
Definition 1453
General Description 1454
Degree of Expansion 1454
Benefits 1454
Problems in Structural Foaming 1454
Low-Density Foams 1454
Polyurethane 1455
Expanded Polystyrene 1455
Polyvinyl Chloride 1456
Polyethylene 1456
Blow Molding 1456
Thermoforming 1457
Rotational Molding (``Rotomolding´´) 1458
Powder Coating 1458
Fluid Bed Coating 1459
Electrostatic Fluid Bed 1459
Electrostatic Spray 1459
Calendering 1460
Vinyl Plastisol Processing 1461
Liquid Casting Processes 1462
Compression Molding and Transfer Molding 1463
Reinforced Plastic Processing 1464
Matched Die Molding Processes 1464
Open Molding 1465
Special Processes 1465
References 1466
Further Reading 1468
Rubber 1469
Introduction 1469
Rubber Concepts 1470
Polymer Structure 1471
Macrostructure 1471
Molecular Weight 1471
Molecular Weight Distribution 1471
Branching 1471
Microstructure 1472
Network Structure 1472
Rubber Properties 1473
Elasticity: The Retractive Force 1473
Glass Transition Temperature 1474
Crystallinity 1474
Rubber Use 1475
Compounding 1475
Curatives 1475
Reinforcing Agents 1475
Fillers 1475
Plasticizers 1475
Antidegradants 1475
Processing 1476
Natural Rubber 1476
Uses 1477
Polyisoprene 1478
Monomer Production 1478
Polymer Production Process 1479
Use 1479
Styrene-Butadiene Rubber 1479
Monomer Production 1479
Polymer Production Process 1480
Emulsion Process 1480
Solution Process 1482
Functional Solution SBR 1483
Polybutadiene (BR) 1484
Monomer Production 1484
Polymer Production Process 1484
Uses 1484
Ethylene-Propylene Rubber 1486
Monomer Production 1486
Polymer Production 1486
Use 1486
Butyl Rubber 1487
Monomer Production 1487
Production Process 1487
Properties and Use 1487
Nitrile Rubber 1487
Monomer Production 1488
Polymer Production 1488
Properties and Use 1488
Hydrogenated Nitrile Rubber 1488
Uses 1488
Chloroprene Rubber 1488
Monomer Production 1489
Production Process 1489
Properties and Uses 1489
Silicone Elastomers 1489
Monomer Production 1489
Polymer Production 1490
Uses 1490
Polyurethane Rubber 1490
Raw Materials 1491
Uses 1491
Modified Polyethylene Rubbers 1491
Chlorinated Polyethylene 1491
Chlorosulfonated Polyethylene 1492
Thermoplastic Elastomers 1492
Block Copolymers 1492
Uses 1493
Ionomers 1493
Uses 1494
Metallocene Elastomers 1494
Rubber-Plastic Alloys 1494
Uses 1495
Plasticized Polyvinyl Chloride 1495
Monomer Production 1495
Production Process 1495
Properties and Use 1495
Fluorocarbon Elastomers 1495
Uses 1496
References 1496
Section 5: Biochemistry 1498
Industrial Biotechnology: Discovery to Delivery 1499
Introduction 1499
Discovery of Organisms and Molecules 1501
Microbial Diversity 1501
Screening and Selection 1502
Cell Engineering 1503
Molecular Engineering 1505
Development of a Production Process 1505
Strain 1505
Fermentation Process 1506
Sterilization 1507
Microbial Kinetics 1508
Ideal Types of Fermentors 1509
Oxygen Transfer Considerations 1512
Scale-Up/Scale-Down and Control 1513
Instrumentation, Analytics, and Control 1514
Recovery of Fermentation Products 1515
Separation of Proteins and Peptides 1516
Fermentor Harvest and Primary Recovery 1519
Formulation 1523
Whole Cell Recovery 1529
Separation of Small Molecules and Metabolites 1529
Regulatory Considerations 1530
Delivery of Products 1531
Production Cost 1533
Variable Cost 1533
Fixed Cost 1536
Correlation to Overall Fermentation Cost 1537
Unifying Metrics 1537
Organic Acids and Polymers 1538
Alcohols 1549
Hydrocarbons 1553
Advanced Biofuels 1555
Higher Alcohols 1555
Biodiesel Production 1556
Isoprenoid-Based Biofuels 1556
Carbon Sources for Biofuel Production 1557
Next-Generation Processes: Fuels from Carbon Dioxide 1558
Amino Acids 1558
Vitamins and Nutraceuticals 1563
Antibiotics 1567
Biopharmaceuticals 1570
Enzymes 1571
Future: Biorefineries 1571
References 1572
Industrial Enzymes and Biocatalysis 1575
Introduction 1575
Section I: Industrial Enzymes: General Properties 1577
History of Enzyme Use 1577
Enzyme Structure and Properties 1578
Enzyme Classification 1581
Enzyme Catalysis and Kinetics 1582
Enzyme Kinetics 1583
Enzyme Inhibition 1585
Enzyme Discovery and Engineering 1586
Enzyme Discovery 1586
Enzyme Engineering 1588
Section II: Industrial Enzymes-Properties and Applications 1590
Proteases 1593
Protease Applications 1594
Protease Production 1595
Amylases 1596
Amylase Production 1597
Amylases in Wet and Dry Milling Processes 1597
Additional Amylase Applications 1598
Glucose Isomerase 1600
Cellulases 1601
Hemicellulases 1601
Lignocellulose Degradation with Cellulases and Hemicellulases 1602
Lipases and Esterases 1603
Phytase 1604
Oxidoreductases 1605
Emerging Industrial Enzymes 1605
Section III: Industrial Biocatalysis 1606
Biocatalytic Processes 1608
Immobilized Enzymes 1608
Kinetics of Immobilized Enzymes 1609
Current Methods for Large-Scale Immobilization 1610
Bioreactor Configurations 1613
Whole-Cell Biocatalysis 1615
Nonaqueous Biocatalysis 1618
Novel Media for Biocatalysis 1619
Products of Biocatalysis 1621
Fine and Bulk Industrial Chemicals 1621
Chiral Pharmaceutical Intermediates 1628
Herbicides 1632
Carbohydrates 1633
Future Trends in Biocatalysis 1636
Products 1636
Summary and Conclusion 1637
References 1637
Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification 1643
Introduction 1643
Cells Used for Industrial Production 1645
Host Cell Lines 1645
Expression Systems 1647
Identifying High-Expressing Clonal Cells 1648
Cell Banking 1649
Cell Stability 1650
Media 1650
Commercial Serum-Free Media 1651
Approaches for Serum-Free Medium Development 1652
Chemically Defined Media Development 1653
Bioreactor Systems 1654
Stirred Tank Systems 1654
Disposable Bioreactors 1655
Modes of Bioreactor Operation 1656
Cell Culture Process and Control 1657
Process Parameters 1657
Mitigating Effects of Physical and Chemical Stress 1657
Fed-Batch Process Control and Optimization 1659
Perfusion Process Control and Optimization 1659
Scale-Up of Mammalian Cell Bioreactors 1660
Purification Process 1661
Platform Purification Processes 1661
Cell Culture Harvest and Clarification 1663
Capture Chromatography 1665
Removal of Impurities 1665
Virus Filtration 1667
Product Formulation by Ultrafiltration, Diafiltration, and Sterile filtration 1667
Strategies for Scaling Up Purification Process 1668
References 1669
Section 6: Emerging Fields of Industrial Chemistry 1674
Nanoparticles: From Fundamentals to Applications 1675
Introduction 1675
What Is Nano? 1676
History 1677
A New Realm of Matter 1678
Synthesis 1679
Solvated Metal Atom Dispersion (SMAD) Method for the Preparation of Nanoparticles 1679
Gold (Au) Nanoparticles 1681
Silver (Ag) Nanoparticles 1683
Semiconductor Nanoparticles 1685
Metal Oxide Nanoparticles 1686
Modified Aerogel Procedure 1687
Mixed Metal Oxide Nanoparticles 1690
Selected Applications of Nanoparticles 1691
Catalysis: Dechlorination and Dehydrochlorination 1691
Destructive Adsorption of Chemical Warfare (CW) Agents 1692
Photocatalytic Degradation of Organics 1692
Commercial Products 1693
Conclusions 1693
References 1694
Electrochemical Energy Storage: Current and Emerging Technologies 1696
Introduction 1697
Fundamental Science of Electrochemical Storage 1698
Charging Conditions and Termination 1702
Theoretical Capacity 1702
Theoretical and Practical Cell Voltages 1704
Primary Batteries 1704
Zinc Air (Zn-Air) Battery 1705
Lithium Air (Li-Air) Battery 1706
Lithium Thionyl Chloride (Li/SOCl2) Battery 1706
Secondary Batteries 1707
Recombination Batteries 1707
Lead Acid (Pb-Acid) Battery 1710
Nickel-Cadmium (Ni-Cd) Battery 1711
Nickel Metal Hydride (NiMH) Battery 1712
Lithium Secondary Batteries 1712
Lithium Ion Battery (Li-Ion) 1713
Lithium Iron Phosphate (LiFePO4) 1714
Lithium-Metal-Polymer (Li-Polymer) 1715
High Temperature Batteries 1716
Redox-Flow Batteries 1717
Supercapacitors 1719
Conclusions and Emerging Technologies 1721
References 1723
Electrochemical Energy Production Using Fuel Cell Technologies 1729
Introduction to Fuel Cells 1730
H2-Fueled Polymer Electrolyte Membrane Fuel Cells (PEMFCs) 1731
Introduction 1731
Polymer Electrolyte Membrane Separator 1733
Nafion 1733
Alternative Polymer Electrolytes 1736
Catalysts Used in PEMFC Anodes and Cathodes 1736
Catalyst Supports for PEMFCs 1737
Carbon Support Materials 1737
Other Catalyst Supports 1739
Catalyst Layers (CLs) 1740
Gas Diffusion Layer (GDL) 1741
Microporous Layer (MPL) 1741
Bipolar Plates 1741
Other Cell Components 1741
PEMFC Full System 1741
Proton Exchange Membrane-Based Direct Alcohol Fuel Cells (PEM-DAFCs) 1742
Components and Reactions in Direct Alcohol Fuel Cells 1743
Effect of DAFC Operating Conditions on Performance 1745
Methanol and Ethanol Oxidation Mechanism 1747
Anode Catalysts Used in DAFCs 1749
Pt-Ru-Based Catalysts 1749
Pt-Sn-Based Catalysts 1749
Other Pt-Based Catalysts for Both Methanol and Ethanol Oxidation Reactions 1750
Pt-Based Core-Shell Methanol and Ethanol Oxidation Reactions 1750
Direct Formic Acid Fuel Cells (DFAFCs) 1751
Solid Oxide Fuel Cells (SOFCs) 1752
SOFC Cell Designs 1753
Typical SOFC Cell Materials 1755
SOFC Electrolytes 1755
SOFC Anode Materials 1755
SOFC Cathode Materials 1757
Interconnects 1757
SOFC Material Synthesis Methods 1758
Molten Carbonate Fuel Cells 1759
Ionic Melt Electrolytes 1761
Anode Catalyst Materials 1762
Cathode Catalyst Materials 1763
Manufacturing of MCFCs 1763
Direct Carbon (Molten Liquid) Fuel Cells (DCFCs) 1764
Summary 1765
References 1766
CO2 Utilization 1780
Introduction 1780
Direct Utilization of Carbon Dioxide 1781
Supercritical CO2 1781
Microalgae 1782
Conversion of Carbon Dioxide to Chemicals 1788
Conversion of Carbon Dioxide to Energy Products 1789
Methanol 1789
Dimethyl Carbonate 1791
Dimethyl Ester 1792
Hydrogen Source 1793
Carbon Integration 1795
Conclusion 1795
References 1797
Section 7: Industrial Processing and Engineering 1802
Safety Considerations in the Chemical Process Industries 1803
Introduction 1805
Why Process Safety Is Important 1805
Occupational Safety Versus Process Safety 1805
Process Safety Technology Issues 1805
Process Safety Management Issues 1806
Barrier Analysis and Layers of Protection [2] 1806
Anatomy of an Incident [3] 1808
The Anatomy of an Incident Model 1808
Loss of Containment [2] 1808
Containment and Control [2] 1809
Initiating Cause or Event [2] 1809
Prevention of Loss of Containment Events [2] 1810
Safety Instrumented Systems [2, 4] 1810
Redundant Instrumentation and Control Systems [5] 1810
Number of Inputs Consequence 1811
Pressure Relief Systems 1812
Blow Down Systems [2] 1812
Mitigation of Loss of Containment Events [2] 1813
Design for Emergency Isolation of Piping Systems [2] 1813
Gas Detection [2] 1814
Flame/Detonation Arrestors [2] 1814
Explosion Venting, Mechanical Isolation, and Explosion Suppression [12] 1814
Fire Protection [2] 1814
Emergency Response [2] 1815
Management Systems (Risk Based Process Safety) [2, 13] 1815
Commit to Process Safety 1816
Process Safety Culture 1817
Human Factors [2] 1817
Compliance with Standards 1817
Inherently Safer Concepts [2, 14] 1817
Process Design [2] 1818
Inerting 1821
Electrical Area Classification (EAC) [2] 1823
Static Electricity, Grounding, and Bonding 1823
Introduction 1823
Hazard Determinants 1824
Review of Design Alternatives 1828
Process Safety Competency 1828
Workforce Involvement 1828
Stakeholder Outreach 1828
Understand Hazards and Risk 1829
Process Safety Knowledge 1829
Combustion Hazards 1829
Introduction 1829
Fire [25] 1829
Flammability 1831
Mists and Foams 1834
Ignition 1835
Explosions 1839
Development of Pressure 1839
Deflagration 1840
Detonations 1841
Explosion Violence 1842
Losses from Dust Explosions 1843
Boiling Liquid Expanding Vapor Explosions (BLEVES) 1845
Damage Estimates [16] 1846
Explosion Consequences 1846
Radiation Consequences 1846
Unconfined Vapor Cloud Explosions (UVCE) 1848
Physical Explosions 1848
Mechanical Heat 1851
Vacuum [32] 1851
Protective Measures for Equipment 1852
Reactivity Hazards [2] 1852
Toxicity Hazards [2] 1854
Corrosivity Hazard [2] 1855
Hazard Identification and Risk Analysis 1856
Hazard Identification 1857
Some Tools for Evaluating Risks and Hazards 1858
Consequences and Impacts 1858
Probability 1859
Risk Analysis 1859
Risk Understanding 1859
Quantitative Risk Analysis (QRA) 1860
Safety Risk Criteria [44] 1860
Security Vulnerabilities of Fixed Chemical Sites [48] 1862
Manage Risk 1862
Operating Procedures 1863
Safe Work Practices 1863
Asset Integrity and Reliability 1863
Contractor (Safety) Management 1864
Training and Performance Assurance 1864
Management of Change (MOC) 1864
Operational Readiness 1864
Conduct of Operations 1865
Emergency Management 1865
Learn from Experience 1865
Incident Investigation 1865
Measurement and Metrics 1866
Auditing 1866
Management Review and Continuous Improvement 1866
Process Safety in Bioprocess Manufacturing Facilities [49] 1867
Regulations 1868
Process Safety Management 1868
Risk Management Plans (RMPs) 1874
Toxics Release Inventory 1875
Hazwoper 1875
More Information 1875
The Principal Reason for Most Chemical Process Accidents 1876
Levels of Causes 1876
Case Histories 1876
Flixborough, England 1974 [19] 1876
Bhopal, 1985 (CandEN Feb. 11, 1985 Technica 1989 [36])
Phillips Explosion, 1989 [39] 1879
Summary 1882
References 1882
Additional Reading References 1884
Internet References and WEB Pages 1884
Applied Statistical Methods and the Chemical Industry 1886
Introduction 1886
Simple Tools of Descriptive Statistics 1887
Tools of Routine Industrial Process Monitoring and Capability Assessment 1893
Statistical Methods and Industrial Experimentation 1899
Identifying Major Contributors to Process Variation 1900
Discovering and Exploiting Patterns of Factor Influence on Responses 1903
Special Statistical Tools for Chemical Applications 1908
Mixture Experiments 1908
Mechanistic Model Building 1913
Modern Business Process Improvement and the Discipline of Statistics 1914
Conclusion 1915
References 1915
Green Engineering: Integration of Green Chemistry, Pollution Prevention, Risk-Based Considerations, and Life Cycle Analysis 1917
Overview and Scope 1918
What Is Green Chemistry? 1918
What Is Green Engineering? 1918
Role of Risk Assessment 1919
What Is Life Cycle Assessment and Its Role? 1920
Chapter Objective 1920
Chapter Layout 1920
Green Chemistry Principles and Pathway to Green Engineering 1921
Introduction 1921
Twelve Principles of Green Chemistry 1922
Principles of Green Engineering 1924
Examples of Green Integration of Chemistry and Engineering 1925
Summary 1928
Pollution Prevention Heuristics for Chemical Processes 1928
Introduction 1928
Hierarchical Rules for Waste Minimization 1928
Batch or Continuous? 1930
Input-Output Structure 1930
Recycle Structure of the Flow Sheet 1931
Reaction Systems 1931
Separation Systems 1932
Post-processing and Product Section 1933
Energy Systems 1933
Auxiliary Equipments 1934
Heuristics for Green Reactor Design 1934
Minor Modifications 1934
Retrofitting 1935
More Greener Processes 1935
The P2 Rules for Separations Devices 1935
Distillation Columns 1936
Gas-Liquid Separation 1936
Gas-Solid Separations 1936
Liquid-Liquid Separations 1936
Liquid-Solid Separations 1936
Illustrative Examples 1937
Summary and the Path Forward 1940
Understanding and Prediction of the Environmental Fate of Chemicals 1941
Introduction 1941
Translocation of Chemicals in the Environment 1942
Modeling the Environment 1942
Translocation Processes in Air 1944
Translocation Processes in Water 1946
Translocation Processes in Soil 1947
Translocation Processes Involving Biota 1948
Transformation of Chemicals in the Environment 1948
Biotic Transformation Processes 1948
Biodegradation 1948
Phytodegradation 1950
Abiotic Transformation Processes 1950
Hydrolysis 1950
Photolysis 1951
Oxidation/Reduction Reactions 1953
The Connection Between Chemical Properties and Environmental Fate 1953
Traditional Chemical Properties 1953
Specialized Chemical Properties 1954
Sources of Chemical Property and Fate Data 1955
Handbooks 1955
Software and Online Sources of Chemical Properties 1955
Estimation Methods 1955
Heuristics for Predicting Environmental Fate 1955
Environmental Performance Assessment for Chemical Process Design 1955
Scope 1955
Overview of Environmental Impact Assessment: The Three Tier Approach 1956
Early Process Design Evaluations: ``Tier I´´ Assessment 1959
Solvent Selection 1959
Reaction Pathway Selection 1959
Evaluations During Process Synthesis: ``Tier II´´ Assessment 1961
Detailed Evaluation of Process Flowsheets: ``Tier III´´ Assessment 1961
Hybrid Screening Evaluations: Combining ``Tier I´´-``Tier III´´-Life Cycle Assessment 1965
Conclusions 1969
Life Cycle Assessment 1970
Introduction 1970
Historical Background and ISO Standards 1970
Steps or Phases Involved in LCA 1970
Goal and Scope of LCA 1972
Methods for Life Cycle Inventory (LCI) 1973
Economy Scale Method of LCI 1973
Life Cycle Scale of LCI 1974
Equipment Scale Approach 1974
The Hybrid Approach 1974
Limited LCI Approach and Other Methods 1974
Other Methods 1974
Use of Exergy Concept 1974
Impact Assessment and Analysis 1975
Classification 1975
Characterization 1975
Valuation 1975
LCA in Practice 1976
Fuels for Electricity Production 1976
Hydrogen Production 1977
Transportation Fuels 1977
Automobile Fuel Options 1977
Catalytic Converter and Auxiliary Power Units 1978
Electrochemical Processes 1978
Pharmaceuticals 1978
Desalination and Water Usage 1979
Paint Industry 1979
Pulp and Paper Industry 1980
Plastic Recycle 1980
Waste Management 1980
Consumer Products 1981
Food Industry and Food Packaging 1981
Life Cycle Sustainability Assessment (LCSA) 1982
AIChE Sustainability Index 1983
Software and Databases 1983
Conclusions 1984
References 1985
Industrial Catalysis: A Practical Guide 1991
The Importance of Catalysis 1992
How Does a Catalyst Work? 1993
What Are the Catalytic Metals and Metal Oxides? 1994
The Structure of Heterogeneous Catalysts 1994
Rate-Limiting Steps for a Supported Catalyst 1995
Selectivity 1998
Catalyst Preparation 1999
A Heterogeneous Catalytic Reaction: An Example 2001
Active Catalytic Sites 2001
Reactor Types 2002
Kinetics 2002
Rate Models 2005
Catalyst Deactivation 2005
Homogeneous Catalytic Reactions 2009
Commercial Applications 2009
Petroleum Processing 2009
Alternative Fuels 2013
Catalysts for Controlling Automotive Emissions 2014
Three-Way Catalytic Conversion 2015
Modern Catalytic Converter Systems 2017
Controlling Emissions from Diesel Engines 2018
Diesel Oxidation Catalysts 2019
Controlling NOx in Diesel Engines 2020
Catalytic Hydrogenation of Vegetable Oils for Edible Food Products 2021
Triglycerides 2021
Fertilizers and Hydrogen Generation 2023
Ammonia Synthesis 2025
Nitric Acid Synthesis 2026
Pure Hydrogen Generation with Pressure Swing Adsorption Purification 2027
Fuel Cells 2027
Production of Butyraldehyde: A Homogeneous Catalytic Reaction 2028
Polyethylene and Polypropylene for the Production of Plastics 2029
Catalyst Challenges 2030
References 2030
Dividing Wall Columns in the Chemical Industry 2032
Introduction 2032
Why Are Dividing Wall Columns of Interest? 2032
Conventional Distillation Sequences 2033
Basic Dividing Wall Column Configurations 2035
Offset Dividing Walls 2036
Energy Savings 2037
Remixing Effects 2037
Energy Efficiency and Configuration Selection 2038
Simulation and Modeling of DWCs 2040
Industrially Installed DWC Performance Characteristics 2041
Retrofits 2041
Intensified DWC Configurations 2042
4+ Component DWCs 2042
E-DWC 2043
A-DWC 2044
R-DWC 2044
Industrial Dividing Wall Column Applications 2046
Chemical industry DWC practitioners (Table 5) 2047
BASF 2047
British Petroleum (BP) 2048
Sasol 2049
ExxonMobil (Esso) 2049
Kyowa Yuka Chemical Company 2049
Valero 2049
Bayer AG 2049
LG Chemical 2050
Lonza 2050
Bharat Petroleum Corporation Limited (BPCL) 2051
Chemical Industry DWC Technology Providers (Table 7) 2051
Montz 2051
Sulzer Chemtech 2052
Sumitomo Heavy Industries (SHI) 2052
Koch-Glitsch 2054
UOP 2054
Kellogg, Brown, and Root (KBR) 2056
ThyssenKrupp/Krupp Uhde 2056
Linde AG 2057
GTC 2057
Conclusion 2059
References 2059
Process Control in the Chemical Industry 2063
Introduction 2064
Process Understanding 2065
Process Characterization 2068
First-Order Plus Deadtime Process 2069
Integrating Process 2070
Process Linearity 2071
Single-Loop Control 2071
Manual Control 2071
Feedback Control 2073
Proportional-Only Control 2075
Proportional-Integral (PI) Control 2076
Proportional-Integral-Derivative (PID) Control 2078
Controller Action 2079
Back Calculation 2080
PID Implementation 2081
Mode 2082
Tuning and Loop Performance 2084
Manual Tuning 2084
Automatically Establishing Tuning 2086
Commissioning: Sticky Valves and Other Field Challenges 2087
Multi-loop Control 2089
Feedforward Control 2089
Dynamic Compensation 2090
Cascade Control 2093
Benefits 2094
Example: Superheater Temperature Control 2094
Implementation 2096
Override Control 2097
Override Operation 2098
Implementation 2099
Control Using Two Manipulated Parameters 2099
Split-Range Control 2101
Powerhouse Example 2101
Implementation 2102
Ratio Control 2104
Ratio Input Selection 2104
Example: Blending 2104
Implementation 2105
Model Predictive Control 2106
MPC Replacement of PID 2107
Using MPC to Address Process Interactions 2108
Layering MPC onto an Existing Strategy 2108
Industrial Chemistry of Steel 2110
Introduction 2110
Construction 2111
Transport 2111
Energy 2111
Packaging 2111
Appliances and Industry 2111
What Is Steel 2112
Major Classes of Steel [3, 5] 2112
Manufacturing of Steel [1-5] 2112
Liquid Pig Iron Production in Blast Furnace 2113
Solid Iron Production: DRI 2118
The Electric Arc Furnace Process 2119
Refining of Steel 2119
Casting 2120
Continuous Casting 2120
Ingot Casting 2120
Rolling 2120
Recycling [6] 2121
Thermochemistry [1, 2, 4] 2122
Thermochemistry of Ironmaking in Blast Furnace 2122
Thermochemistry of Direct-Reduced Iron (DRI) [7, 8] 2125
Thermochemistry of Steelmaking 2126
Thermochemistry of Steel Refining 2126
Future of Steel 2127
Production and Growth Patterns [7, 8] 2127
Energy Consumption 2127
Economics of Steel Production 2127
Environmental 2129
Safety 2131
References 2131
Managing an Emergency Preparedness Program 2133
Introduction 2133
Prevention, Prediction, and Preparation 2133
Need for Emergency Preparedness Programs 2134
Preventing and Predicting Emergencies: Getting Started 2135
Hazard Identification and Mitigation 2137
Process Safety Management Team 2137
Identifying Hazards: PSR Teams 2137
Review Methods 2138
Recommendations and Reports 2139
Mitigating Hazards: Release Detection and Mitigation 2140
Preparing for Emergencies: Identifying and Evaluating Resources 2142
Personnel 2142
Plans 2142
Alarm Systems 2145
Facilities for Protection and Communication 2146
Developing an ERP 2147
Plan Design 2148
EMO Structure 2149
Training Personnel 2151
Fire Brigade Training 2152
EMO Training 2152
Employee Training 2153
Facility Drills 2153
Involving the Community 2154
Communications 2154
Integrating Plans 2156
Off-Site Warning 2156
Local Emergency Plans 2157
Local Emergency Planning Committees 2157
Drills and Critiques 2158
Laws, Regulations, and Support 2158
Laws 2158
Meeting the Requirements 2159
Prevention and Preparation 2159
Plans 2162
Communications 2162
Reports 2162
Training, Drills, Audits, and Evaluations 2162
Sources of Assistance 2163
Select Bibliography 2163
Standards 2164
Suggested Reading 2164
Regulations 2164
Prevention and Planning 2164
Laws, Regulations, and Standards 2165
Laws and Regulations 2165
Transportation 2166
Environmental Chemical Determinations 2167
Introduction 2167
Significance of Environmental Chemical Determinations 2167
Chemical Analysis Strategies 2168
Samples and Sampling Strategies 2168
Determination of Total Elements or Total Related Substances 2169
Determination of Specific Substances 2170
Target Analyte (TA) Strategy 2171
The Broad Spectrum (BS) Strategy 2171
Single-Analyte and Multi-analyte Methods 2172
Remote Laboratory Analyses and Field Analyses 2172
Discrete Samples and Continuous Monitoring 2173
Analytical Quality Assurance and Control 2174
Development and Documentation of Analytical Methods 2174
Research Methods 2174
Methods in Development 2175
Methods Published by Standard-Setting Organizations 2175
Methods Published or Referenced in Government Agency Regulations 2175
Characteristics of Analytes, Samples, and Sampling Techniques 2176
Volatile Analytes 2176
Semivolatile Analytes 2176
Nonvolatile analytes 2178
Condensed-Phase Samples 2178
Vapor-Phase Samples 2180
Bulk Vapor-Phase Samples 2180
Separated Analytes 2181
Processing of Samples Before Determination of the Analytes 2182
Chromatographic Analytical Methods 2183
Chromatographic Separation Techniques 2183
Gas Chromatography 2183
High-Performance Liquid Chromatography 2184
High-Performance Ion Exchange Chromatography 2185
Other Chromatographic and Related Techniques 2185
Chromatography Detectors 2185
Nonchromatographic Analytical Methods 2186
Elemental Analysis 2187
Atomic Absorption 2187
Atomic Emission 2187
Mass Spectrometry 2187
Organic and Inorganic Compounds and Ions 2188
Glossary 2188
References 2190
Suggested Additional Reading 2190
Index 2191

Erscheint lt. Verlag 1.8.2017
Zusatzinfo XVIII, 2225 p. 1504 illus., 82 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik
Wirtschaft Betriebswirtschaft / Management
Schlagworte Biomass conversion • Biotechnology • chemical engineering • Chemistry industry • Industrial Chemistry • Industrial Pollution Prevention • Kent • Quality Control, Reliability, Safety and Risk • Riegel
ISBN-10 3-319-52287-6 / 3319522876
ISBN-13 978-3-319-52287-6 / 9783319522876
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 91,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
CHF 82,95