Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Computational Probability Applications (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
X, 256 Seiten
Springer International Publishing (Verlag)
978-3-319-43317-2 (ISBN)

Lese- und Medienproben

Computational Probability Applications -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This focuses on the developing field of building probability models with the power of symbolic algebra systems. The book combines the uses of symbolic algebra with probabilistic/stochastic application and highlights the applications in a variety of contexts. The research explored in each chapter is unified by the use of A Probability Programming Language (APPL) to achieve the modeling objectives. APPL, as a research tool, enables a probabilist or statistician the ability to explore new ideas, methods, and models. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. 

Computational Probability Applications is comprised of fifteen chapters, each presenting a specific application of computational probability using the APPL modeling and computer language. The chapter topics include using inverse gamma as a survival distribution, linear approximations of probability density functions, and also moment-ratio diagrams for univariate distributions. These works highlight interesting examples, often done by undergraduate students and graduate students that can serve as templates for future work. In addition, this book should appeal to researchers and practitioners in a range of fields including probability, statistics, engineering, finance, neuroscience, and economics.


Dr. Andrew Glen is a Professor Emeritus of Operations Research from the United States Military Academy, in West Point, NY. He is currently a visiting professor at The Colorado College in Colorado Springs, Colorado. He is a retired colonel from the US Army, and spend 16 years on faculty at West Point. He has published three books and dozens of scholarly articles, mostly on the subject of computational probability. His research and teaching interests are in computational probability and statistical modeling. 

Lawrence Leemis is a professor in the Department of Mathematics at The College of William & Mary in Williamsburg, Virginia, U.S.A. He received his BS and MS degrees in mathematics and his PhD in operations research from Purdue University. He has also taught courses at Purdue University, The University of Oklahoma, and Baylor University. He has served as Associate Editor for the IEEE Transactions on Reliability, Book Review Editor for the Journal of Quality Technology, and an Associate Editor for Naval Research Logistics. He has published six books and over 100 research articles, proceedings papers, and book chapters. His research and teaching interests are in reliability, simulation, and computational probability.

Dr. Andrew Glen is a Professor Emeritus of Operations Research from the United States Military Academy, in West Point, NY. He is currently a visiting professor at The Colorado College in Colorado Springs, Colorado. He is a retired colonel from the US Army, and spend 16 years on faculty at West Point. He has published three books and dozens of scholarly articles, mostly on the subject of computational probability. His research and teaching interests are in computational probability and statistical modeling.  Lawrence Leemis is a professor in the Department of Mathematics at The College of William & Mary in Williamsburg, Virginia, U.S.A. He received his BS and MS degrees in mathematics and his PhD in operations research from Purdue University. He has also taught courses at Purdue University, The University of Oklahoma, and Baylor University. He has served as Associate Editor for the IEEE Transactions on Reliability, Book Review Editor for the Journal of Quality Technology, and an Associate Editor for Naval Research Logistics. He has published six books and over 100 research articles, proceedings papers, and book chapters. His research and teaching interests are in reliability, simulation, and computational probability.

Accurate Estimation with One Order Statistic.- On the Inverse Gamma as a Survival Distribution.- Order Statistics in Goodness-of-Fit Testing.- The "Straightforward" Nature of Arrival Rate Estimation?.- Survival Distributions Based on the Incomplete Gamma Function Ratio.- An Inference Methodology for Life Tests with Full Samples or Type II Right Censoring.- Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics.- Notes on Rank Statistics.- Control Chart Constants for Non-Normal Sampling.- Linear Approximations of Probability Density Functions.- Univariate Probability Distributions.- Moment-Ratio Diagrams for Univariate Distributions.- The Distribution of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling Test Statistics for Exponential Populations with Estimated Parameters.- Parametric Model Discrimiation for Heavily Censored Survival Data.- Lower Confidence Bounds for System Reliability from Binary Failure Data Using Bootstrapping. 

Erscheint lt. Verlag 1.12.2016
Reihe/Serie International Series in Operations Research & Management Science
International Series in Operations Research & Management Science
Zusatzinfo X, 256 p. 78 illus., 10 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Technik
Wirtschaft Allgemeines / Lexika
Schlagworte APPL • computational probability • Maple • Probabilistic Applications • Probability Theory • Stochastic Applications
ISBN-10 3-319-43317-2 / 3319433172
ISBN-13 978-3-319-43317-2 / 9783319433172
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich